Алгебра Примеры

Risolvere per x (2x-3)(5x+1)=2x+2/5
Этап 1
Упростим .
Нажмите для увеличения количества этапов...
Этап 1.1
Перепишем.
Этап 1.2
Упростим путем добавления нулей.
Этап 1.3
Развернем , используя метод «первые-внешние-внутренние-последние».
Нажмите для увеличения количества этапов...
Этап 1.3.1
Применим свойство дистрибутивности.
Этап 1.3.2
Применим свойство дистрибутивности.
Этап 1.3.3
Применим свойство дистрибутивности.
Этап 1.4
Упростим и объединим подобные члены.
Нажмите для увеличения количества этапов...
Этап 1.4.1
Упростим каждый член.
Нажмите для увеличения количества этапов...
Этап 1.4.1.1
Перепишем, используя свойство коммутативности умножения.
Этап 1.4.1.2
Умножим на , сложив экспоненты.
Нажмите для увеличения количества этапов...
Этап 1.4.1.2.1
Перенесем .
Этап 1.4.1.2.2
Умножим на .
Этап 1.4.1.3
Умножим на .
Этап 1.4.1.4
Умножим на .
Этап 1.4.1.5
Умножим на .
Этап 1.4.1.6
Умножим на .
Этап 1.4.2
Вычтем из .
Этап 2
Перенесем все члены с в левую часть уравнения.
Нажмите для увеличения количества этапов...
Этап 2.1
Вычтем из обеих частей уравнения.
Этап 2.2
Вычтем из .
Этап 3
Перенесем все члены в левую часть уравнения и упростим.
Нажмите для увеличения количества этапов...
Этап 3.1
Вычтем из обеих частей уравнения.
Этап 3.2
Упростим .
Нажмите для увеличения количества этапов...
Этап 3.2.1
Чтобы записать в виде дроби с общим знаменателем, умножим ее на .
Этап 3.2.2
Объединим и .
Этап 3.2.3
Объединим числители над общим знаменателем.
Этап 3.2.4
Упростим числитель.
Нажмите для увеличения количества этапов...
Этап 3.2.4.1
Умножим на .
Этап 3.2.4.2
Вычтем из .
Этап 3.2.5
Вынесем знак минуса перед дробью.
Этап 4
Умножим на наименьшее общее кратное знаменателей , затем упростим.
Нажмите для увеличения количества этапов...
Этап 4.1
Применим свойство дистрибутивности.
Этап 4.2
Упростим.
Нажмите для увеличения количества этапов...
Этап 4.2.1
Умножим на .
Этап 4.2.2
Умножим на .
Этап 4.2.3
Сократим общий множитель .
Нажмите для увеличения количества этапов...
Этап 4.2.3.1
Перенесем стоящий впереди знак минуса в в числитель.
Этап 4.2.3.2
Сократим общий множитель.
Этап 4.2.3.3
Перепишем это выражение.
Этап 5
Используем формулу для нахождения корней квадратного уравнения.
Этап 6
Подставим значения , и в формулу для корней квадратного уравнения и решим относительно .
Этап 7
Упростим.
Нажмите для увеличения количества этапов...
Этап 7.1
Упростим числитель.
Нажмите для увеличения количества этапов...
Этап 7.1.1
Возведем в степень .
Этап 7.1.2
Умножим .
Нажмите для увеличения количества этапов...
Этап 7.1.2.1
Умножим на .
Этап 7.1.2.2
Умножим на .
Этап 7.1.3
Добавим и .
Этап 7.1.4
Перепишем в виде .
Этап 7.1.5
Вынесем члены из-под знака корня, предполагая, что вещественные числа являются положительными.
Этап 7.2
Умножим на .
Этап 7.3
Упростим .
Этап 8
Окончательный ответ является комбинацией обоих решений.
Этап 9
Результат можно представить в различном виде.
Точная форма:
Десятичная форма:
Форма смешанных чисел: