Алгебра Примеры

Risolvere per x |2x-1|>|3x+5|
Этап 1
Заменим на в .
Этап 2
Перепишем это уравнение абсолютного значения в виде четырех уравнений без знаков модуля.
Этап 3
После упрощения остается решить только два уникальных уравнения.
Этап 4
Решим относительно .
Нажмите для увеличения количества этапов...
Этап 4.1
Перенесем все члены с в левую часть уравнения.
Нажмите для увеличения количества этапов...
Этап 4.1.1
Вычтем из обеих частей уравнения.
Этап 4.1.2
Вычтем из .
Этап 4.2
Перенесем все члены без в правую часть уравнения.
Нажмите для увеличения количества этапов...
Этап 4.2.1
Добавим к обеим частям уравнения.
Этап 4.2.2
Добавим и .
Этап 4.3
Разделим каждый член на и упростим.
Нажмите для увеличения количества этапов...
Этап 4.3.1
Разделим каждый член на .
Этап 4.3.2
Упростим левую часть.
Нажмите для увеличения количества этапов...
Этап 4.3.2.1
Деление двух отрицательных значений дает положительное значение.
Этап 4.3.2.2
Разделим на .
Этап 4.3.3
Упростим правую часть.
Нажмите для увеличения количества этапов...
Этап 4.3.3.1
Разделим на .
Этап 5
Решим относительно .
Нажмите для увеличения количества этапов...
Этап 5.1
Упростим .
Нажмите для увеличения количества этапов...
Этап 5.1.1
Перепишем.
Этап 5.1.2
Упростим путем добавления нулей.
Этап 5.1.3
Применим свойство дистрибутивности.
Этап 5.1.4
Умножим.
Нажмите для увеличения количества этапов...
Этап 5.1.4.1
Умножим на .
Этап 5.1.4.2
Умножим на .
Этап 5.2
Перенесем все члены с в левую часть уравнения.
Нажмите для увеличения количества этапов...
Этап 5.2.1
Добавим к обеим частям уравнения.
Этап 5.2.2
Добавим и .
Этап 5.3
Перенесем все члены без в правую часть уравнения.
Нажмите для увеличения количества этапов...
Этап 5.3.1
Добавим к обеим частям уравнения.
Этап 5.3.2
Добавим и .
Этап 5.4
Разделим каждый член на и упростим.
Нажмите для увеличения количества этапов...
Этап 5.4.1
Разделим каждый член на .
Этап 5.4.2
Упростим левую часть.
Нажмите для увеличения количества этапов...
Этап 5.4.2.1
Сократим общий множитель .
Нажмите для увеличения количества этапов...
Этап 5.4.2.1.1
Сократим общий множитель.
Этап 5.4.2.1.2
Разделим на .
Этап 5.4.3
Упростим правую часть.
Нажмите для увеличения количества этапов...
Этап 5.4.3.1
Вынесем знак минуса перед дробью.
Этап 6
Перечислим все решения.
Этап 7
Используем каждый корень для создания контрольных интервалов.
Этап 8
Выберем тестовое значение из каждого интервала и подставим это значение в исходное неравенство для определения интервалов, удовлетворяющих неравенству.
Нажмите для увеличения количества этапов...
Этап 8.1
Проверим значение на интервале и посмотрим, делает ли оно верным неравенство.
Нажмите для увеличения количества этапов...
Этап 8.1.1
Выберем значение на интервале и посмотрим, делает ли это значение верным исходное неравенство.
Этап 8.1.2
Заменим на в исходном неравенстве.
Этап 8.1.3
Левая часть не больше правой части , значит, данное утверждение ложно.
Ложь
Ложь
Этап 8.2
Проверим значение на интервале и посмотрим, делает ли оно верным неравенство.
Нажмите для увеличения количества этапов...
Этап 8.2.1
Выберем значение на интервале и посмотрим, делает ли это значение верным исходное неравенство.
Этап 8.2.2
Заменим на в исходном неравенстве.
Этап 8.2.3
Левая часть больше правой части , значит, данное утверждение всегда истинно.
Истина
Истина
Этап 8.3
Проверим значение на интервале и посмотрим, делает ли оно верным неравенство.
Нажмите для увеличения количества этапов...
Этап 8.3.1
Выберем значение на интервале и посмотрим, делает ли это значение верным исходное неравенство.
Этап 8.3.2
Заменим на в исходном неравенстве.
Этап 8.3.3
Левая часть не больше правой части , значит, данное утверждение ложно.
Ложь
Ложь
Этап 8.4
Сравним интервалы, чтобы определить, какие из них удовлетворяют исходному неравенству.
Ложь
Истина
Ложь
Ложь
Истина
Ложь
Этап 9
Решение состоит из всех истинных интервалов.
Этап 10
Результат можно представить в различном виде.
Форма неравенства:
Интервальное представление:
Этап 11