Алгебра Примеры

Risolvere per x квадратный корень из 4x^2-20x+25=5-2x
Этап 1
Чтобы избавиться от радикала в левой части уравнения, возведем обе части уравнения в квадрат.
Этап 2
Упростим каждую часть уравнения.
Нажмите для увеличения количества этапов...
Этап 2.1
С помощью запишем в виде .
Этап 2.2
Упростим левую часть.
Нажмите для увеличения количества этапов...
Этап 2.2.1
Упростим .
Нажмите для увеличения количества этапов...
Этап 2.2.1.1
Перемножим экспоненты в .
Нажмите для увеличения количества этапов...
Этап 2.2.1.1.1
Применим правило степени и перемножим показатели, .
Этап 2.2.1.1.2
Сократим общий множитель .
Нажмите для увеличения количества этапов...
Этап 2.2.1.1.2.1
Сократим общий множитель.
Этап 2.2.1.1.2.2
Перепишем это выражение.
Этап 2.2.1.2
Упростим.
Этап 2.3
Упростим правую часть.
Нажмите для увеличения количества этапов...
Этап 2.3.1
Упростим .
Нажмите для увеличения количества этапов...
Этап 2.3.1.1
Перепишем в виде .
Этап 2.3.1.2
Развернем , используя метод «первые-внешние-внутренние-последние».
Нажмите для увеличения количества этапов...
Этап 2.3.1.2.1
Применим свойство дистрибутивности.
Этап 2.3.1.2.2
Применим свойство дистрибутивности.
Этап 2.3.1.2.3
Применим свойство дистрибутивности.
Этап 2.3.1.3
Упростим и объединим подобные члены.
Нажмите для увеличения количества этапов...
Этап 2.3.1.3.1
Упростим каждый член.
Нажмите для увеличения количества этапов...
Этап 2.3.1.3.1.1
Умножим на .
Этап 2.3.1.3.1.2
Умножим на .
Этап 2.3.1.3.1.3
Умножим на .
Этап 2.3.1.3.1.4
Перепишем, используя свойство коммутативности умножения.
Этап 2.3.1.3.1.5
Умножим на , сложив экспоненты.
Нажмите для увеличения количества этапов...
Этап 2.3.1.3.1.5.1
Перенесем .
Этап 2.3.1.3.1.5.2
Умножим на .
Этап 2.3.1.3.1.6
Умножим на .
Этап 2.3.1.3.2
Вычтем из .
Этап 3
Решим относительно .
Нажмите для увеличения количества этапов...
Этап 3.1
Перенесем все члены с в левую часть уравнения.
Нажмите для увеличения количества этапов...
Этап 3.1.1
Добавим к обеим частям уравнения.
Этап 3.1.2
Вычтем из обеих частей уравнения.
Этап 3.1.3
Объединим противоположные члены в .
Нажмите для увеличения количества этапов...
Этап 3.1.3.1
Добавим и .
Этап 3.1.3.2
Добавим и .
Этап 3.1.3.3
Вычтем из .
Этап 3.1.3.4
Добавим и .
Этап 3.2
Поскольку , это уравнение всегда будет истинным для любого значения .
Все вещественные числа
Все вещественные числа
Этап 4
Результат можно представить в различном виде.
Все вещественные числа
Интервальное представление: