Алгебра Примеры

Risolvere per x 10^(4x+1)>=100^(x-2)
Этап 1
Сформируем в уравнении эквивалентные выражения с одинаковыми основаниями.
Этап 2
Поскольку основания одинаковы, два выражения равны только в том случае, если равны экспоненты.
Этап 3
Решим относительно .
Нажмите для увеличения количества этапов...
Этап 3.1
Упростим .
Нажмите для увеличения количества этапов...
Этап 3.1.1
Перепишем.
Этап 3.1.2
Упростим путем добавления нулей.
Этап 3.1.3
Применим свойство дистрибутивности.
Этап 3.1.4
Умножим на .
Этап 3.2
Перенесем все члены с в левую часть неравенства.
Нажмите для увеличения количества этапов...
Этап 3.2.1
Вычтем из обеих частей неравенства.
Этап 3.2.2
Вычтем из .
Этап 3.3
Перенесем все члены без в правую часть неравенства.
Нажмите для увеличения количества этапов...
Этап 3.3.1
Вычтем из обеих частей неравенства.
Этап 3.3.2
Вычтем из .
Этап 3.4
Разделим каждый член на и упростим.
Нажмите для увеличения количества этапов...
Этап 3.4.1
Разделим каждый член на .
Этап 3.4.2
Упростим левую часть.
Нажмите для увеличения количества этапов...
Этап 3.4.2.1
Сократим общий множитель .
Нажмите для увеличения количества этапов...
Этап 3.4.2.1.1
Сократим общий множитель.
Этап 3.4.2.1.2
Разделим на .
Этап 3.4.3
Упростим правую часть.
Нажмите для увеличения количества этапов...
Этап 3.4.3.1
Вынесем знак минуса перед дробью.
Этап 4
Используем каждый корень для создания контрольных интервалов.
Этап 5
Выберем тестовое значение из каждого интервала и подставим это значение в исходное неравенство для определения интервалов, удовлетворяющих неравенству.
Нажмите для увеличения количества этапов...
Этап 5.1
Проверим значение на интервале и посмотрим, делает ли оно верным неравенство.
Нажмите для увеличения количества этапов...
Этап 5.1.1
Выберем значение на интервале и посмотрим, делает ли это значение верным исходное неравенство.
Этап 5.1.2
Заменим на в исходном неравенстве.
Этап 5.1.3
Левая часть равна правой части , значит, данное утверждение всегда истинно.
Истина
Истина
Этап 5.2
Проверим значение на интервале и посмотрим, делает ли оно верным неравенство.
Нажмите для увеличения количества этапов...
Этап 5.2.1
Выберем значение на интервале и посмотрим, делает ли это значение верным исходное неравенство.
Этап 5.2.2
Заменим на в исходном неравенстве.
Этап 5.2.3
Левая часть больше правой части , значит, данное утверждение всегда истинно.
Истина
Истина
Этап 5.3
Сравним интервалы, чтобы определить, какие из них удовлетворяют исходному неравенству.
Истина
Истина
Истина
Истина
Этап 6
Решение состоит из всех истинных интервалов.
или
Этап 7
Объединим интервалы для любого значения .
Все вещественные числа
Этап 8
Результат можно представить в различном виде.
Все вещественные числа
Интервальное представление:
Этап 9