Примеры
, ,
Этап 1
Существует два общих уравнения эллипса.
Уравнение горизонтального эллипса:
Уравнение вертикального эллипса
Этап 2
Этап 2.1
Используем формулу расстояния для определения расстояние между этими двумя точками.
Этап 2.2
Подставим фактические значения точек в формулу расстояния.
Этап 2.3
Упростим.
Этап 2.3.1
Вычтем из .
Этап 2.3.2
Возведем в степень .
Этап 2.3.3
Вычтем из .
Этап 2.3.4
Возведение в любую положительную степень дает .
Этап 2.3.5
Добавим и .
Этап 2.3.6
Перепишем в виде .
Этап 2.3.7
Вынесем члены из-под знака корня, предполагая, что вещественные числа являются положительными.
Этап 3
Этап 3.1
Используем формулу расстояния для определения расстояние между этими двумя точками.
Этап 3.2
Подставим фактические значения точек в формулу расстояния.
Этап 3.3
Упростим.
Этап 3.3.1
Вычтем из .
Этап 3.3.2
Возведем в степень .
Этап 3.3.3
Вычтем из .
Этап 3.3.4
Возведение в любую положительную степень дает .
Этап 3.3.5
Добавим и .
Этап 3.3.6
Перепишем в виде .
Этап 3.3.7
Вынесем члены из-под знака корня, предполагая, что вещественные числа являются положительными.
Этап 4
Этап 4.1
Перепишем уравнение в виде .
Этап 4.2
Возведем в степень .
Этап 4.3
Возведем в степень .
Этап 4.4
Перенесем все члены без в правую часть уравнения.
Этап 4.4.1
Вычтем из обеих частей уравнения.
Этап 4.4.2
Вычтем из .
Этап 4.5
Разделим каждый член на и упростим.
Этап 4.5.1
Разделим каждый член на .
Этап 4.5.2
Упростим левую часть.
Этап 4.5.2.1
Деление двух отрицательных значений дает положительное значение.
Этап 4.5.2.2
Разделим на .
Этап 4.5.3
Упростим правую часть.
Этап 4.5.3.1
Разделим на .
Этап 4.6
Возьмем указанный корень от обеих частей уравнения, чтобы исключить член со степенью в левой части.
Этап 4.7
Упростим .
Этап 4.7.1
Перепишем в виде .
Этап 4.7.1.1
Вынесем множитель из .
Этап 4.7.1.2
Перепишем в виде .
Этап 4.7.2
Вынесем члены из-под знака корня.
Этап 4.8
Полное решение является результатом как положительных, так и отрицательных частей решения.
Этап 4.8.1
Сначала с помощью положительного значения найдем первое решение.
Этап 4.8.2
Затем, используя отрицательное значение , найдем второе решение.
Этап 4.8.3
Полное решение является результатом как положительных, так и отрицательных частей решения.
Этап 5
— это расстояние, т. е. должно быть положительным числом.
Этап 6
Этап 6.1
Угловой коэффициент равен отношению изменения к изменению или отношению приращения функции к приращению аргумента.
Этап 6.2
Изменение в равно разности координат x (также называется разностью абсцисс), а изменение в равно разности координат y (также называется разностью ординат).
Этап 6.3
Подставим значения и в уравнение, чтобы найти угловой коэффициент.
Этап 6.4
Упростим.
Этап 6.4.1
Упростим числитель.
Этап 6.4.1.1
Умножим на .
Этап 6.4.1.2
Добавим и .
Этап 6.4.2
Упростим знаменатель.
Этап 6.4.2.1
Умножим на .
Этап 6.4.2.2
Вычтем из .
Этап 6.4.3
Разделим на .
Этап 6.5
Общее уравнение горизонтального эллипса: .
Этап 7
Подставим значения , , и в , чтобы получить уравнение эллипса .
Этап 8
Этап 8.1
Упростим числитель.
Этап 8.1.1
Умножим на .
Этап 8.1.2
Добавим и .
Этап 8.2
Возведем в степень .
Этап 8.3
Упростим числитель.
Этап 8.3.1
Умножим на .
Этап 8.3.2
Добавим и .
Этап 8.4
Упростим знаменатель.
Этап 8.4.1
Применим правило умножения к .
Этап 8.4.2
Возведем в степень .
Этап 8.4.3
Перепишем в виде .
Этап 8.4.3.1
С помощью запишем в виде .
Этап 8.4.3.2
Применим правило степени и перемножим показатели, .
Этап 8.4.3.3
Объединим и .
Этап 8.4.3.4
Сократим общий множитель .
Этап 8.4.3.4.1
Сократим общий множитель.
Этап 8.4.3.4.2
Перепишем это выражение.
Этап 8.4.3.5
Найдем экспоненту.
Этап 8.5
Умножим на .
Этап 9