Примеры

Найти собственные векторы / собственное пространство
Этап 1
Найдем собственные значения.
Нажмите для увеличения количества этапов...
Этап 1.1
Запишем формулу для построения характеристического уравнения .
Этап 1.2
Единичная матрица размера представляет собой квадратную матрицу с единицами на главной диагонали и нулями на остальных местах.
Этап 1.3
Подставим известное значение в .
Нажмите для увеличения количества этапов...
Этап 1.3.1
Подставим вместо .
Этап 1.3.2
Подставим вместо .
Этап 1.4
Упростим.
Нажмите для увеличения количества этапов...
Этап 1.4.1
Упростим каждый член.
Нажмите для увеличения количества этапов...
Этап 1.4.1.1
Умножим на каждый элемент матрицы.
Этап 1.4.1.2
Упростим каждый элемент матрицы.
Нажмите для увеличения количества этапов...
Этап 1.4.1.2.1
Умножим на .
Этап 1.4.1.2.2
Умножим .
Нажмите для увеличения количества этапов...
Этап 1.4.1.2.2.1
Умножим на .
Этап 1.4.1.2.2.2
Умножим на .
Этап 1.4.1.2.3
Умножим .
Нажмите для увеличения количества этапов...
Этап 1.4.1.2.3.1
Умножим на .
Этап 1.4.1.2.3.2
Умножим на .
Этап 1.4.1.2.4
Умножим на .
Этап 1.4.2
Сложим соответствующие элементы.
Этап 1.4.3
Simplify each element.
Нажмите для увеличения количества этапов...
Этап 1.4.3.1
Добавим и .
Этап 1.4.3.2
Добавим и .
Этап 1.5
Find the determinant.
Нажмите для увеличения количества этапов...
Этап 1.5.1
Определитель матрицы можно найти, используя формулу .
Этап 1.5.2
Упростим определитель.
Нажмите для увеличения количества этапов...
Этап 1.5.2.1
Упростим каждый член.
Нажмите для увеличения количества этапов...
Этап 1.5.2.1.1
Развернем , используя метод «первые-внешние-внутренние-последние».
Нажмите для увеличения количества этапов...
Этап 1.5.2.1.1.1
Применим свойство дистрибутивности.
Этап 1.5.2.1.1.2
Применим свойство дистрибутивности.
Этап 1.5.2.1.1.3
Применим свойство дистрибутивности.
Этап 1.5.2.1.2
Упростим и объединим подобные члены.
Нажмите для увеличения количества этапов...
Этап 1.5.2.1.2.1
Упростим каждый член.
Нажмите для увеличения количества этапов...
Этап 1.5.2.1.2.1.1
Умножим на .
Этап 1.5.2.1.2.1.2
Умножим на .
Этап 1.5.2.1.2.1.3
Умножим на .
Этап 1.5.2.1.2.1.4
Перепишем, используя свойство коммутативности умножения.
Этап 1.5.2.1.2.1.5
Умножим на , сложив экспоненты.
Нажмите для увеличения количества этапов...
Этап 1.5.2.1.2.1.5.1
Перенесем .
Этап 1.5.2.1.2.1.5.2
Умножим на .
Этап 1.5.2.1.2.1.6
Умножим на .
Этап 1.5.2.1.2.1.7
Умножим на .
Этап 1.5.2.1.2.2
Вычтем из .
Этап 1.5.2.1.3
Умножим на .
Этап 1.5.2.2
Вычтем из .
Этап 1.5.2.3
Изменим порядок и .
Этап 1.6
Примем характеристический многочлен равным , чтобы найти собственные значения .
Этап 1.7
Решим относительно .
Нажмите для увеличения количества этапов...
Этап 1.7.1
Используем формулу для нахождения корней квадратного уравнения.
Этап 1.7.2
Подставим значения , и в формулу для корней квадратного уравнения и решим относительно .
Этап 1.7.3
Упростим.
Нажмите для увеличения количества этапов...
Этап 1.7.3.1
Упростим числитель.
Нажмите для увеличения количества этапов...
Этап 1.7.3.1.1
Возведем в степень .
Этап 1.7.3.1.2
Умножим .
Нажмите для увеличения количества этапов...
Этап 1.7.3.1.2.1
Умножим на .
Этап 1.7.3.1.2.2
Умножим на .
Этап 1.7.3.1.3
Вычтем из .
Этап 1.7.3.2
Умножим на .
Этап 1.7.4
Окончательный ответ является комбинацией обоих решений.
Этап 2
The eigenvector is equal to the null space of the matrix minus the eigenvalue times the identity matrix where is the null space and is the identity matrix.
Этап 3
Find the eigenvector using the eigenvalue .
Нажмите для увеличения количества этапов...
Этап 3.1
Подставим известные значения в формулу.
Этап 3.2
Упростим.
Нажмите для увеличения количества этапов...
Этап 3.2.1
Упростим каждый член.
Нажмите для увеличения количества этапов...
Этап 3.2.1.1
Умножим на каждый элемент матрицы.
Этап 3.2.1.2
Упростим каждый элемент матрицы.
Нажмите для увеличения количества этапов...
Этап 3.2.1.2.1
Умножим на .
Этап 3.2.1.2.2
Умножим .
Нажмите для увеличения количества этапов...
Этап 3.2.1.2.2.1
Умножим на .
Этап 3.2.1.2.2.2
Умножим на .
Этап 3.2.1.2.3
Умножим .
Нажмите для увеличения количества этапов...
Этап 3.2.1.2.3.1
Умножим на .
Этап 3.2.1.2.3.2
Умножим на .
Этап 3.2.1.2.4
Умножим на .
Этап 3.2.2
Сложим соответствующие элементы.
Этап 3.2.3
Simplify each element.
Нажмите для увеличения количества этапов...
Этап 3.2.3.1
Чтобы записать в виде дроби с общим знаменателем, умножим ее на .
Этап 3.2.3.2
Объединим и .
Этап 3.2.3.3
Объединим числители над общим знаменателем.
Этап 3.2.3.4
Упростим числитель.
Нажмите для увеличения количества этапов...
Этап 3.2.3.4.1
Умножим на .
Этап 3.2.3.4.2
Применим свойство дистрибутивности.
Этап 3.2.3.4.3
Умножим на .
Этап 3.2.3.4.4
Вычтем из .
Этап 3.2.3.5
Добавим и .
Этап 3.2.3.6
Добавим и .
Этап 3.2.3.7
Чтобы записать в виде дроби с общим знаменателем, умножим ее на .
Этап 3.2.3.8
Объединим и .
Этап 3.2.3.9
Объединим числители над общим знаменателем.
Этап 3.2.3.10
Упростим числитель.
Нажмите для увеличения количества этапов...
Этап 3.2.3.10.1
Умножим на .
Этап 3.2.3.10.2
Применим свойство дистрибутивности.
Этап 3.2.3.10.3
Умножим на .
Этап 3.2.3.10.4
Вычтем из .
Этап 3.2.3.11
Перепишем в виде .
Этап 3.2.3.12
Вынесем множитель из .
Этап 3.2.3.13
Вынесем множитель из .
Этап 3.2.3.14
Вынесем знак минуса перед дробью.
Этап 3.3
Find the null space when .
Нажмите для увеличения количества этапов...
Этап 3.3.1
Write as an augmented matrix for .
Этап 3.3.2
Приведем матрицу к стандартной форме по строкам.
Нажмите для увеличения количества этапов...
Этап 3.3.2.1
Multiply each element of by to make the entry at a .
Нажмите для увеличения количества этапов...
Этап 3.3.2.1.1
Multiply each element of by to make the entry at a .
Этап 3.3.2.1.2
Упростим .
Этап 3.3.2.2
Perform the row operation to make the entry at a .
Нажмите для увеличения количества этапов...
Этап 3.3.2.2.1
Perform the row operation to make the entry at a .
Этап 3.3.2.2.2
Упростим .
Этап 3.3.3
Use the result matrix to declare the final solution to the system of equations.
Этап 3.3.4
Write a solution vector by solving in terms of the free variables in each row.
Этап 3.3.5
Write the solution as a linear combination of vectors.
Этап 3.3.6
Write as a solution set.
Этап 3.3.7
The solution is the set of vectors created from the free variables of the system.
Этап 4
Find the eigenvector using the eigenvalue .
Нажмите для увеличения количества этапов...
Этап 4.1
Подставим известные значения в формулу.
Этап 4.2
Упростим.
Нажмите для увеличения количества этапов...
Этап 4.2.1
Упростим каждый член.
Нажмите для увеличения количества этапов...
Этап 4.2.1.1
Умножим на каждый элемент матрицы.
Этап 4.2.1.2
Упростим каждый элемент матрицы.
Нажмите для увеличения количества этапов...
Этап 4.2.1.2.1
Умножим на .
Этап 4.2.1.2.2
Умножим .
Нажмите для увеличения количества этапов...
Этап 4.2.1.2.2.1
Умножим на .
Этап 4.2.1.2.2.2
Умножим на .
Этап 4.2.1.2.3
Умножим .
Нажмите для увеличения количества этапов...
Этап 4.2.1.2.3.1
Умножим на .
Этап 4.2.1.2.3.2
Умножим на .
Этап 4.2.1.2.4
Умножим на .
Этап 4.2.2
Сложим соответствующие элементы.
Этап 4.2.3
Simplify each element.
Нажмите для увеличения количества этапов...
Этап 4.2.3.1
Чтобы записать в виде дроби с общим знаменателем, умножим ее на .
Этап 4.2.3.2
Объединим и .
Этап 4.2.3.3
Объединим числители над общим знаменателем.
Этап 4.2.3.4
Упростим числитель.
Нажмите для увеличения количества этапов...
Этап 4.2.3.4.1
Умножим на .
Этап 4.2.3.4.2
Применим свойство дистрибутивности.
Этап 4.2.3.4.3
Умножим на .
Этап 4.2.3.4.4
Умножим .
Нажмите для увеличения количества этапов...
Этап 4.2.3.4.4.1
Умножим на .
Этап 4.2.3.4.4.2
Умножим на .
Этап 4.2.3.4.5
Вычтем из .
Этап 4.2.3.5
Добавим и .
Этап 4.2.3.6
Добавим и .
Этап 4.2.3.7
Чтобы записать в виде дроби с общим знаменателем, умножим ее на .
Этап 4.2.3.8
Объединим и .
Этап 4.2.3.9
Объединим числители над общим знаменателем.
Этап 4.2.3.10
Упростим числитель.
Нажмите для увеличения количества этапов...
Этап 4.2.3.10.1
Умножим на .
Этап 4.2.3.10.2
Применим свойство дистрибутивности.
Этап 4.2.3.10.3
Умножим на .
Этап 4.2.3.10.4
Умножим .
Нажмите для увеличения количества этапов...
Этап 4.2.3.10.4.1
Умножим на .
Этап 4.2.3.10.4.2
Умножим на .
Этап 4.2.3.10.5
Вычтем из .
Этап 4.2.3.11
Перепишем в виде .
Этап 4.2.3.12
Вынесем множитель из .
Этап 4.2.3.13
Вынесем множитель из .
Этап 4.2.3.14
Вынесем знак минуса перед дробью.
Этап 4.3
Find the null space when .
Нажмите для увеличения количества этапов...
Этап 4.3.1
Write as an augmented matrix for .
Этап 4.3.2
Приведем матрицу к стандартной форме по строкам.
Нажмите для увеличения количества этапов...
Этап 4.3.2.1
Multiply each element of by to make the entry at a .
Нажмите для увеличения количества этапов...
Этап 4.3.2.1.1
Multiply each element of by to make the entry at a .
Этап 4.3.2.1.2
Упростим .
Этап 4.3.2.2
Perform the row operation to make the entry at a .
Нажмите для увеличения количества этапов...
Этап 4.3.2.2.1
Perform the row operation to make the entry at a .
Этап 4.3.2.2.2
Упростим .
Этап 4.3.3
Use the result matrix to declare the final solution to the system of equations.
Этап 4.3.4
Write a solution vector by solving in terms of the free variables in each row.
Этап 4.3.5
Write the solution as a linear combination of vectors.
Этап 4.3.6
Write as a solution set.
Этап 4.3.7
The solution is the set of vectors created from the free variables of the system.
Этап 5
The eigenspace of is the list of the vector space for each eigenvalue.
Введите СВОЮ задачу
Для Mathway требуются JavaScript и современный браузер.