Основы мат. анализа Примеры

,
Этап 1
Вычтем из обеих частей уравнения.
Этап 2
Разложим на множители методом группировки
Нажмите для увеличения количества этапов...
Этап 2.1
Для многочлена вида представим средний член в виде суммы двух членов, произведение которых равно , а сумма — .
Нажмите для увеличения количества этапов...
Этап 2.1.1
Умножим на .
Этап 2.1.2
Запишем как плюс
Этап 2.1.3
Применим свойство дистрибутивности.
Этап 2.2
Вынесем наибольший общий делитель из каждой группы.
Нажмите для увеличения количества этапов...
Этап 2.2.1
Сгруппируем первые два члена и последние два члена.
Этап 2.2.2
Вынесем наибольший общий делитель (НОД) из каждой группы.
Этап 2.3
Разложим многочлен, вынеся наибольший общий делитель .
Этап 3
Если любой отдельный множитель в левой части уравнения равен , все выражение равно .
Этап 4
Приравняем к , затем решим относительно .
Нажмите для увеличения количества этапов...
Этап 4.1
Приравняем к .
Этап 4.2
Решим относительно .
Нажмите для увеличения количества этапов...
Этап 4.2.1
Добавим к обеим частям уравнения.
Этап 4.2.2
Разделим каждый член на и упростим.
Нажмите для увеличения количества этапов...
Этап 4.2.2.1
Разделим каждый член на .
Этап 4.2.2.2
Упростим левую часть.
Нажмите для увеличения количества этапов...
Этап 4.2.2.2.1
Сократим общий множитель .
Нажмите для увеличения количества этапов...
Этап 4.2.2.2.1.1
Сократим общий множитель.
Этап 4.2.2.2.1.2
Разделим на .
Этап 5
Приравняем к , затем решим относительно .
Нажмите для увеличения количества этапов...
Этап 5.1
Приравняем к .
Этап 5.2
Вычтем из обеих частей уравнения.
Этап 6
Окончательным решением являются все значения, при которых верно.
Этап 7
Найдем значения , которые позволяют получить значение в интервале .
Нажмите для увеличения количества этапов...
Этап 7.1
Интервал не содержит . Он не является частью окончательного решения.
не находится в данном интервале
Этап 7.2
Интервал содержит .
Введите СВОЮ задачу
Для Mathway требуются JavaScript и современный браузер.