Основы мат. анализа Примеры

x2-5x+3x25x+3
Этап 1
Найдем свойства заданной параболы.
Нажмите для увеличения количества этапов...
Этап 1.1
Перепишем уравнение в форме с выделенной вершиной.
Нажмите для увеличения количества этапов...
Этап 1.1.1
Составим полный квадрат для x2-5x+3x25x+3.
Нажмите для увеличения количества этапов...
Этап 1.1.1.1
Применим форму ax2+bx+cax2+bx+c, чтобы найти значения aa, bb и cc.
a=1a=1
b=-5b=5
c=3c=3
Этап 1.1.1.2
Рассмотрим параболу в форме с выделенной вершиной.
a(x+d)2+ea(x+d)2+e
Этап 1.1.1.3
Найдем значение dd по формуле d=b2ad=b2a.
Нажмите для увеличения количества этапов...
Этап 1.1.1.3.1
Подставим значения aa и bb в формулу d=b2ad=b2a.
d=-521d=521
Этап 1.1.1.3.2
Упростим правую часть.
Нажмите для увеличения количества этапов...
Этап 1.1.1.3.2.1
Умножим 22 на 11.
d=-52d=52
Этап 1.1.1.3.2.2
Вынесем знак минуса перед дробью.
d=-52d=52
d=-52d=52
d=-52d=52
Этап 1.1.1.4
Найдем значение ee по формуле e=c-b24ae=cb24a.
Нажмите для увеличения количества этапов...
Этап 1.1.1.4.1
Подставим значения cc, bb и aa в формулу e=c-b24ae=cb24a.
e=3-(-5)241e=3(5)241
Этап 1.1.1.4.2
Упростим правую часть.
Нажмите для увеличения количества этапов...
Этап 1.1.1.4.2.1
Упростим каждый член.
Нажмите для увеличения количества этапов...
Этап 1.1.1.4.2.1.1
Возведем -55 в степень 22.
e=3-2541e=32541
Этап 1.1.1.4.2.1.2
Умножим 44 на 11.
e=3-254e=3254
e=3-254e=3254
Этап 1.1.1.4.2.2
Чтобы записать 33 в виде дроби с общим знаменателем, умножим ее на 4444.
e=344-254e=344254
Этап 1.1.1.4.2.3
Объединим 33 и 4444.
e=344-254e=344254
Этап 1.1.1.4.2.4
Объединим числители над общим знаменателем.
e=34-254e=34254
Этап 1.1.1.4.2.5
Упростим числитель.
Нажмите для увеличения количества этапов...
Этап 1.1.1.4.2.5.1
Умножим 33 на 44.
e=12-254e=12254
Этап 1.1.1.4.2.5.2
Вычтем 2525 из 1212.
e=-134e=134
e=-134e=134
Этап 1.1.1.4.2.6
Вынесем знак минуса перед дробью.
e=-134e=134
e=-134e=134
e=-134e=134
Этап 1.1.1.5
Подставим значения aa, dd и ee в уравнение с заданной вершиной (x-52)2-134(x52)2134.
(x-52)2-134(x52)2134
(x-52)2-134(x52)2134
Этап 1.1.2
Приравняем yy к новой правой части.
y=(x-52)2-134y=(x52)2134
y=(x-52)2-134y=(x52)2134
Этап 1.2
Воспользуемся формой с выделенной вершиной y=a(x-h)2+ky=a(xh)2+k, чтобы определить значения aa, hh и kk.
a=1a=1
h=52h=52
k=-134k=134
Этап 1.3
Поскольку aa имеет положительное значение, ветви параболы направлены вверх.
вверх
Этап 1.4
Найдем вершину (h,k)(h,k).
(52,-134)(52,134)
Этап 1.5
Найдем pp, расстояние от вершины до фокуса.
Нажмите для увеличения количества этапов...
Этап 1.5.1
Найдем расстояние от вершины до фокуса параболы, используя следующую формулу.
14a14a
Этап 1.5.2
Подставим значение aa в формулу.
141141
Этап 1.5.3
Сократим общий множитель 11.
Нажмите для увеличения количества этапов...
Этап 1.5.3.1
Сократим общий множитель.
141
Этап 1.5.3.2
Перепишем это выражение.
14
14
14
Этап 1.6
Найдем фокус.
Нажмите для увеличения количества этапов...
Этап 1.6.1
Фокус параболы можно найти, добавив p к координате y k, если ветви параболы направлены вверх или вниз.
(h,k+p)
Этап 1.6.2
Подставим известные значения h, p и k в формулу и упростим.
(52,-3)
(52,-3)
Этап 1.7
Найдем ось симметрии, то есть линию, которая проходит через вершину и фокус.
x=52
Этап 1.8
Найдем направляющую.
Нажмите для увеличения количества этапов...
Этап 1.8.1
Директриса параболы ― это горизонтальная прямая, которую можно найти вычитанием p из y-координаты вершины k, если ветви параболы направлены вверх или вниз.
y=k-p
Этап 1.8.2
Подставим известные значения p и k в формулу и упростим.
y=-72
y=-72
Этап 1.9
Используем свойства параболы для анализа и построения ее графика.
Направление ветвей: вверх
Вершина: (52,-134)
Фокус: (52,-3)
Ось симметрии: x=52
Директриса: y=-72
Направление ветвей: вверх
Вершина: (52,-134)
Фокус: (52,-3)
Ось симметрии: x=52
Директриса: y=-72
Этап 2
Выберем несколько значений x и подставим их в уравнение, чтобы найти соответствующие значения y. Значения x следует выбрать вблизи вершины.
Нажмите для увеличения количества этапов...
Этап 2.1
Заменим в этом выражении переменную x на 1.
f(1)=(1)2-51+3
Этап 2.2
Упростим результат.
Нажмите для увеличения количества этапов...
Этап 2.2.1
Упростим каждый член.
Нажмите для увеличения количества этапов...
Этап 2.2.1.1
Единица в любой степени равна единице.
f(1)=1-51+3
Этап 2.2.1.2
Умножим -5 на 1.
f(1)=1-5+3
f(1)=1-5+3
Этап 2.2.2
Упростим путем сложения и вычитания.
Нажмите для увеличения количества этапов...
Этап 2.2.2.1
Вычтем 5 из 1.
f(1)=-4+3
Этап 2.2.2.2
Добавим -4 и 3.
f(1)=-1
f(1)=-1
Этап 2.2.3
Окончательный ответ: -1.
-1
-1
Этап 2.3
Значение y при x=1 равно -1.
y=-1
Этап 2.4
Заменим в этом выражении переменную x на 0.
f(0)=(0)2-50+3
Этап 2.5
Упростим результат.
Нажмите для увеличения количества этапов...
Этап 2.5.1
Упростим каждый член.
Нажмите для увеличения количества этапов...
Этап 2.5.1.1
Возведение 0 в любую положительную степень дает 0.
f(0)=0-50+3
Этап 2.5.1.2
Умножим -5 на 0.
f(0)=0+0+3
f(0)=0+0+3
Этап 2.5.2
Упростим путем добавления чисел.
Нажмите для увеличения количества этапов...
Этап 2.5.2.1
Добавим 0 и 0.
f(0)=0+3
Этап 2.5.2.2
Добавим 0 и 3.
f(0)=3
f(0)=3
Этап 2.5.3
Окончательный ответ: 3.
3
3
Этап 2.6
Значение y при x=0 равно 3.
y=3
Этап 2.7
Заменим в этом выражении переменную x на 3.
f(3)=(3)2-53+3
Этап 2.8
Упростим результат.
Нажмите для увеличения количества этапов...
Этап 2.8.1
Упростим каждый член.
Нажмите для увеличения количества этапов...
Этап 2.8.1.1
Возведем 3 в степень 2.
f(3)=9-53+3
Этап 2.8.1.2
Умножим -5 на 3.
f(3)=9-15+3
f(3)=9-15+3
Этап 2.8.2
Упростим путем сложения и вычитания.
Нажмите для увеличения количества этапов...
Этап 2.8.2.1
Вычтем 15 из 9.
f(3)=-6+3
Этап 2.8.2.2
Добавим -6 и 3.
f(3)=-3
f(3)=-3
Этап 2.8.3
Окончательный ответ: -3.
-3
-3
Этап 2.9
Значение y при x=3 равно -3.
y=-3
Этап 2.10
Заменим в этом выражении переменную x на 4.
f(4)=(4)2-54+3
Этап 2.11
Упростим результат.
Нажмите для увеличения количества этапов...
Этап 2.11.1
Упростим каждый член.
Нажмите для увеличения количества этапов...
Этап 2.11.1.1
Возведем 4 в степень 2.
f(4)=16-54+3
Этап 2.11.1.2
Умножим -5 на 4.
f(4)=16-20+3
f(4)=16-20+3
Этап 2.11.2
Упростим путем сложения и вычитания.
Нажмите для увеличения количества этапов...
Этап 2.11.2.1
Вычтем 20 из 16.
f(4)=-4+3
Этап 2.11.2.2
Добавим -4 и 3.
f(4)=-1
f(4)=-1
Этап 2.11.3
Окончательный ответ: -1.
-1
-1
Этап 2.12
Значение y при x=4 равно -1.
y=-1
Этап 2.13
Построим график параболы, используя ее свойства и выбранные точки.
xy031-152-1343-34-1
xy031-152-1343-34-1
Этап 3
Построим график параболы, используя ее свойства и выбранные точки.
Направление ветвей: вверх
Вершина: (52,-134)
Фокус: (52,-3)
Ось симметрии: x=52
Директриса: y=-72
xy031-152-1343-34-1
Этап 4
Введите СВОЮ задачу
using Amazon.Auth.AccessControlPolicy;
Для Mathway требуются JavaScript и современный браузер.
 [x2  12  π  xdx ] 
AmazonPay