Основы мат. анализа Примеры

(x-5)2
Этап 1
Используем формулу биномиального разложения, чтобы найти каждый член. Бином Ньютона имеет вид (a+b)n=k=0nnCk(an-kbk).
k=022!(2-k)!k!(x)2-k(-5)k
Этап 2
Развернем сумму.
2!(2-0)!0!(x)2-0(-5)0+2!(2-1)!1!(x)2-1(-5)1+2!(2-2)!2!(x)2-2(-5)2
Этап 3
Упростим экспоненты для каждого члена разложения.
1(x)2(-5)0+2(x)1(-5)1+1(x)0(-5)2
Этап 4
Упростим каждый член.
Нажмите для увеличения количества этапов...
Этап 4.1
Умножим (x)2 на 1.
(x)2(-5)0+2(x)1(-5)1+1(x)0(-5)2
Этап 4.2
Любое число в степени 0 равно 1.
x21+2(x)1(-5)1+1(x)0(-5)2
Этап 4.3
Умножим x2 на 1.
x2+2(x)1(-5)1+1(x)0(-5)2
Этап 4.4
Упростим.
x2+2x(-5)1+1(x)0(-5)2
Этап 4.5
Найдем экспоненту.
x2+2x-5+1(x)0(-5)2
Этап 4.6
Умножим -5 на 2.
x2-10x+1(x)0(-5)2
Этап 4.7
Умножим (x)0 на 1.
x2-10x+(x)0(-5)2
Этап 4.8
Любое число в степени 0 равно 1.
x2-10x+1(-5)2
Этап 4.9
Умножим (-5)2 на 1.
x2-10x+(-5)2
Этап 4.10
Возведем -5 в степень 2.
x2-10x+25
x2-10x+25
Введите СВОЮ задачу
Для Mathway требуются JavaScript и современный браузер.
 [x2  12  π  xdx ] 
AmazonPay