Примеры
Этап 1
Запишем формулу для построения характеристического уравнения .
Этап 2
Единичная матрица размера представляет собой квадратную матрицу с единицами на главной диагонали и нулями на остальных местах.
Этап 3
Этап 3.1
Подставим вместо .
Этап 3.2
Подставим вместо .
Этап 4
Этап 4.1
Упростим каждый член.
Этап 4.1.1
Умножим на каждый элемент матрицы.
Этап 4.1.2
Упростим каждый элемент матрицы.
Этап 4.1.2.1
Умножим на .
Этап 4.1.2.2
Умножим .
Этап 4.1.2.2.1
Умножим на .
Этап 4.1.2.2.2
Умножим на .
Этап 4.1.2.3
Умножим .
Этап 4.1.2.3.1
Умножим на .
Этап 4.1.2.3.2
Умножим на .
Этап 4.1.2.4
Умножим на .
Этап 4.2
Сложим соответствующие элементы.
Этап 4.3
Упростим каждый элемент.
Этап 4.3.1
Добавим и .
Этап 4.3.2
Добавим и .
Этап 4.3.3
Вычтем из .
Этап 5
Этап 5.1
Определитель матрицы можно найти, используя формулу .
Этап 5.2
Упростим определитель.
Этап 5.2.1
Упростим каждый член.
Этап 5.2.1.1
Применим свойство дистрибутивности.
Этап 5.2.1.2
Умножим на .
Этап 5.2.1.3
Перепишем, используя свойство коммутативности умножения.
Этап 5.2.1.4
Упростим каждый член.
Этап 5.2.1.4.1
Умножим на , сложив экспоненты.
Этап 5.2.1.4.1.1
Перенесем .
Этап 5.2.1.4.1.2
Умножим на .
Этап 5.2.1.4.2
Умножим на .
Этап 5.2.1.4.3
Умножим на .
Этап 5.2.1.5
Умножим на .
Этап 5.2.2
Изменим порядок и .