Примеры
Этап 1
Чтобы найти возможное количество положительных корней, обратим внимание на знаки коэффициентов и подсчитаем, сколько раз коэффициенты меняют знак.
Этап 2
Поскольку число перемен знака членов от высшего порядка до низшего равно , максимальное число положительных корней равно (правило знаков Декарта).
Положительные корни:
Этап 3
Чтобы найти возможное количество отрицательных корней, заменим на и снова сравним знаки.
Этап 4
Этап 4.1
Применим правило умножения к .
Этап 4.2
Возведем в степень .
Этап 4.3
Применим правило умножения к .
Этап 4.4
Возведем в степень .
Этап 4.5
Умножим на .
Этап 4.6
Умножим на .
Этап 5
Поскольку число перемен знака членов от высшего порядка до низшего равно , максимальное число отрицательных корней равно (правило знаков Декарта). Другие возможные количества отрицательных корней находятся путем вычитания пар корней (например, ).
Отрицательные корни: или
Этап 6
Возможное количество положительных корней равно , а возможное количество отрицательных корней ― или .
Положительные корни:
Отрицательные корни: или