Конечная математика Примеры
Этап 1
Квадратичная функция достигает минимума в . Если принимает положительные значения, то минимальным значением функции будет .
входит в
Этап 2
Этап 2.1
Подставим в значения и .
Этап 2.2
Избавимся от скобок.
Этап 2.3
Упростим .
Этап 2.3.1
Сократим общий множитель и .
Этап 2.3.1.1
Вынесем множитель из .
Этап 2.3.1.2
Сократим общие множители.
Этап 2.3.1.2.1
Вынесем множитель из .
Этап 2.3.1.2.2
Сократим общий множитель.
Этап 2.3.1.2.3
Перепишем это выражение.
Этап 2.3.2
Вынесем знак минуса перед дробью.
Этап 2.3.3
Умножим .
Этап 2.3.3.1
Умножим на .
Этап 2.3.3.2
Умножим на .
Этап 3
Этап 3.1
Заменим в этом выражении переменную на .
Этап 3.2
Упростим результат.
Этап 3.2.1
Упростим каждый член.
Этап 3.2.1.1
Применим правило умножения к .
Этап 3.2.1.2
Единица в любой степени равна единице.
Этап 3.2.1.3
Возведем в степень .
Этап 3.2.1.4
Объединим и .
Этап 3.2.1.5
Объединим и .
Этап 3.2.1.6
Вынесем знак минуса перед дробью.
Этап 3.2.2
Найдем общий знаменатель.
Этап 3.2.2.1
Умножим на .
Этап 3.2.2.2
Умножим на .
Этап 3.2.2.3
Запишем в виде дроби со знаменателем .
Этап 3.2.2.4
Умножим на .
Этап 3.2.2.5
Умножим на .
Этап 3.2.2.6
Умножим на .
Этап 3.2.3
Объединим числители над общим знаменателем.
Этап 3.2.4
Упростим выражение.
Этап 3.2.4.1
Умножим на .
Этап 3.2.4.2
Вычтем из .
Этап 3.2.4.3
Добавим и .
Этап 3.2.4.4
Вынесем знак минуса перед дробью.
Этап 3.2.5
Окончательный ответ: .
Этап 4
Используем значения и , чтобы найти, где достигается минимум.
Этап 5