Примеры

Найти уравнение, используя две точки
,
Этап 1
Используем для определения уравнения прямой, где представляет угловой коэффициент, а — точку пересечения с осью y.
Чтобы вычислить уравнение прямой, используем в виде .
Этап 2
Угловой коэффициент равен отношению изменения к изменению или отношению приращения функции к приращению аргумента.
Этап 3
Изменение в равно разности координат x (также называется разностью абсцисс), а изменение в равно разности координат y (также называется разностью ординат).
Этап 4
Подставим значения и в уравнение, чтобы найти угловой коэффициент.
Этап 5
Нахождение углового коэффициента .
Нажмите для увеличения количества этапов...
Этап 5.1
Умножим числитель и знаменатель дроби на .
Нажмите для увеличения количества этапов...
Этап 5.1.1
Умножим на .
Этап 5.1.2
Объединим.
Этап 5.2
Применим свойство дистрибутивности.
Этап 5.3
Упростим путем сокращения.
Нажмите для увеличения количества этапов...
Этап 5.3.1
Сократим общий множитель .
Нажмите для увеличения количества этапов...
Этап 5.3.1.1
Перенесем стоящий впереди знак минуса в в числитель.
Этап 5.3.1.2
Вынесем множитель из .
Этап 5.3.1.3
Сократим общий множитель.
Этап 5.3.1.4
Перепишем это выражение.
Этап 5.3.2
Умножим на .
Этап 5.3.3
Сократим общий множитель .
Нажмите для увеличения количества этапов...
Этап 5.3.3.1
Перенесем стоящий впереди знак минуса в в числитель.
Этап 5.3.3.2
Вынесем множитель из .
Этап 5.3.3.3
Сократим общий множитель.
Этап 5.3.3.4
Перепишем это выражение.
Этап 5.3.4
Умножим на .
Этап 5.4
Упростим числитель.
Нажмите для увеличения количества этапов...
Этап 5.4.1
Умножим на .
Этап 5.4.2
Вычтем из .
Этап 5.5
Упростим знаменатель.
Нажмите для увеличения количества этапов...
Этап 5.5.1
Умножим на .
Этап 5.5.2
Вычтем из .
Этап 5.6
Сократим выражение, путем отбрасывания общих множителей.
Нажмите для увеличения количества этапов...
Этап 5.6.1
Сократим общий множитель и .
Нажмите для увеличения количества этапов...
Этап 5.6.1.1
Вынесем множитель из .
Этап 5.6.1.2
Сократим общие множители.
Нажмите для увеличения количества этапов...
Этап 5.6.1.2.1
Вынесем множитель из .
Этап 5.6.1.2.2
Сократим общий множитель.
Этап 5.6.1.2.3
Перепишем это выражение.
Этап 5.6.2
Вынесем знак минуса перед дробью.
Этап 6
Найдем значение , используя уравнение прямой.
Нажмите для увеличения количества этапов...
Этап 6.1
Найдем с помощью уравнения прямой.
Этап 6.2
Подставим значение в уравнение.
Этап 6.3
Подставим значение в уравнение.
Этап 6.4
Подставим значение в уравнение.
Этап 6.5
Найдем значение .
Нажмите для увеличения количества этапов...
Этап 6.5.1
Перепишем уравнение в виде .
Этап 6.5.2
Упростим каждый член.
Нажмите для увеличения количества этапов...
Этап 6.5.2.1
Сократим общий множитель .
Нажмите для увеличения количества этапов...
Этап 6.5.2.1.1
Перенесем стоящий впереди знак минуса в в числитель.
Этап 6.5.2.1.2
Вынесем множитель из .
Этап 6.5.2.1.3
Сократим общий множитель.
Этап 6.5.2.1.4
Перепишем это выражение.
Этап 6.5.2.2
Вынесем знак минуса перед дробью.
Этап 6.5.3
Перенесем все члены без в правую часть уравнения.
Нажмите для увеличения количества этапов...
Этап 6.5.3.1
Добавим к обеим частям уравнения.
Этап 6.5.3.2
Объединим числители над общим знаменателем.
Этап 6.5.3.3
Добавим и .
Этап 7
Теперь, когда известны значения (углового коэффициента) и (координат точки пересечения с осью y), подставим их в , чтобы найти уравнение прямой.
Этап 8
Введите СВОЮ задачу
Для Mathway требуются JavaScript и современный браузер.