Математический анализ Примеры

f(x)=-1x
Этап 1
Определим, является ли функция нечетной, четной или ни той, ни другой, чтобы найти симметрию.
1. Нечетная функция симметрична относительно начала координат.
2. Четная функция симметрична относительно оси y.
Этап 2
Найдем f(-x).
Нажмите для увеличения количества этапов...
Этап 2.1
Найдем f(-x), подставив -x для всех вхождений x в f(x).
f(-x)=-1-x
Этап 2.2
Сократим общий множитель 1 и -1.
Нажмите для увеличения количества этапов...
Этап 2.2.1
Перепишем 1 в виде -1(-1).
f(-x)=--1-1-x
Этап 2.2.2
Вынесем знак минуса перед дробью.
f(-x)=1x
f(-x)=1x
f(-x)=1x
Этап 3
Функция является четной, если f(-x)=f(x).
Нажмите для увеличения количества этапов...
Этап 3.1
Проверим, верно ли f(-x)=f(x).
Этап 3.2
Так как 1x-1x, эта функция не является четной.
Функция является четной
Функция является четной
Этап 4
Функция является нечетной, если f(-x)=-f(x).
Нажмите для увеличения количества этапов...
Этап 4.1
Умножим -(-1x).
Нажмите для увеличения количества этапов...
Этап 4.1.1
Умножим -1 на -1.
-f(x)=1(1x)
Этап 4.1.2
Умножим 1x на 1.
-f(x)=1x
-f(x)=1x
Этап 4.2
Так как 1x=1x, эта функция является нечетной.
Функция является нечетной.
Функция является нечетной.
Этап 5
Поскольку данная функция является нечетной, она симметрична относительно начала координат.
Симметрия относительно начала координат
Этап 6
Поскольку данная функция не является четной, она не симметрична относительно оси Y.
Нет симметрии относительно оси y
Этап 7
Определим симметрию функции.
Симметрия относительно начала координат
Этап 8
Введите СВОЮ задачу
using Amazon.Auth.AccessControlPolicy;
Для Mathway требуются JavaScript и современный браузер.
 [x2  12  π  xdx ] 
AmazonPay