Математический анализ Примеры

Этап 1
Чтобы решить дифференциальное уравнение, пусть , где  — показатель степени .
Этап 2
Решим уравнение относительно .
Этап 3
Возьмем производную по .
Этап 4
Возьмем производную по .
Нажмите для увеличения количества этапов...
Этап 4.1
Возьмем производную от .
Этап 4.2
Перепишем выражение, используя правило отрицательных степеней .
Этап 4.3
Продифференцируем, используя правило частного, которое гласит, что имеет вид , где и .
Этап 4.4
Продифференцируем, используя правило константы.
Нажмите для увеличения количества этапов...
Этап 4.4.1
Умножим на .
Этап 4.4.2
Поскольку является константой относительно , производная относительно равна .
Этап 4.4.3
Упростим выражение.
Нажмите для увеличения количества этапов...
Этап 4.4.3.1
Умножим на .
Этап 4.4.3.2
Вычтем из .
Этап 4.4.3.3
Вынесем знак минуса перед дробью.
Этап 4.5
Перепишем в виде .
Этап 5
Подставим вместо и вместо в исходное уравнение .
Этап 6
Решим подставленное дифференциальное уравнение.
Нажмите для увеличения количества этапов...
Этап 6.1
Перепишем дифференциальное уравнение в виде .
Нажмите для увеличения количества этапов...
Этап 6.1.1
Перепишем уравнение в виде .
Нажмите для увеличения количества этапов...
Этап 6.1.1.1
Каждый член в умножим на , чтобы убрать дроби.
Нажмите для увеличения количества этапов...
Этап 6.1.1.1.1
Умножим каждый член на .
Этап 6.1.1.1.2
Упростим левую часть.
Нажмите для увеличения количества этапов...
Этап 6.1.1.1.2.1
Упростим каждый член.
Нажмите для увеличения количества этапов...
Этап 6.1.1.1.2.1.1
Сократим общий множитель .
Нажмите для увеличения количества этапов...
Этап 6.1.1.1.2.1.1.1
Перенесем стоящий впереди знак минуса в в числитель.
Этап 6.1.1.1.2.1.1.2
Вынесем множитель из .
Этап 6.1.1.1.2.1.1.3
Сократим общий множитель.
Этап 6.1.1.1.2.1.1.4
Перепишем это выражение.
Этап 6.1.1.1.2.1.2
Умножим на .
Этап 6.1.1.1.2.1.3
Умножим на .
Этап 6.1.1.1.2.1.4
Умножим на , сложив экспоненты.
Нажмите для увеличения количества этапов...
Этап 6.1.1.1.2.1.4.1
Перенесем .
Этап 6.1.1.1.2.1.4.2
Применим правило степени для объединения показателей.
Этап 6.1.1.1.2.1.4.3
Вычтем из .
Этап 6.1.1.1.2.1.5
Упростим .
Этап 6.1.1.1.2.1.6
Умножим на .
Этап 6.1.1.1.3
Упростим правую часть.
Нажмите для увеличения количества этапов...
Этап 6.1.1.1.3.1
Перепишем, используя свойство коммутативности умножения.
Этап 6.1.1.1.3.2
Перемножим экспоненты в .
Нажмите для увеличения количества этапов...
Этап 6.1.1.1.3.2.1
Применим правило степени и перемножим показатели, .
Этап 6.1.1.1.3.2.2
Умножим на .
Этап 6.1.1.1.3.3
Умножим на , сложив экспоненты.
Нажмите для увеличения количества этапов...
Этап 6.1.1.1.3.3.1
Перенесем .
Этап 6.1.1.1.3.3.2
Применим правило степени для объединения показателей.
Этап 6.1.1.1.3.3.3
Вычтем из .
Этап 6.1.1.1.3.4
Упростим .
Этап 6.1.1.2
Изменим порядок членов.
Этап 6.1.2
Вынесем множитель из .
Этап 6.1.3
Изменим порядок и .
Этап 6.2
Интегрирующий множитель определяется по формуле , где .
Нажмите для увеличения количества этапов...
Этап 6.2.1
Зададим интегрирование.
Этап 6.2.2
Проинтегрируем .
Нажмите для увеличения количества этапов...
Этап 6.2.2.1
Поскольку  — константа по отношению к , вынесем из-под знака интеграла.
Этап 6.2.2.2
По правилу степени интеграл по имеет вид .
Этап 6.2.2.3
Упростим ответ.
Нажмите для увеличения количества этапов...
Этап 6.2.2.3.1
Перепишем в виде .
Этап 6.2.2.3.2
Упростим.
Нажмите для увеличения количества этапов...
Этап 6.2.2.3.2.1
Объединим и .
Этап 6.2.2.3.2.2
Сократим общий множитель и .
Нажмите для увеличения количества этапов...
Этап 6.2.2.3.2.2.1
Вынесем множитель из .
Этап 6.2.2.3.2.2.2
Сократим общие множители.
Нажмите для увеличения количества этапов...
Этап 6.2.2.3.2.2.2.1
Вынесем множитель из .
Этап 6.2.2.3.2.2.2.2
Сократим общий множитель.
Этап 6.2.2.3.2.2.2.3
Перепишем это выражение.
Этап 6.2.2.3.2.2.2.4
Разделим на .
Этап 6.2.3
Уберем постоянную интегрирования.
Этап 6.3
Умножим каждый член на интегрирующий множитель .
Нажмите для увеличения количества этапов...
Этап 6.3.1
Умножим каждый член на .
Этап 6.3.2
Перепишем, используя свойство коммутативности умножения.
Этап 6.3.3
Перепишем, используя свойство коммутативности умножения.
Этап 6.3.4
Изменим порядок множителей в .
Этап 6.4
Перепишем левую часть как результат дифференцирования произведения.
Этап 6.5
Зададим интеграл на каждой стороне.
Этап 6.6
Проинтегрируем левую часть.
Этап 6.7
Проинтегрируем правую часть.
Нажмите для увеличения количества этапов...
Этап 6.7.1
Поскольку  — константа по отношению к , вынесем из-под знака интеграла.
Этап 6.7.2
Пусть . Тогда , следовательно . Перепишем, используя и .
Нажмите для увеличения количества этапов...
Этап 6.7.2.1
Пусть . Найдем .
Нажмите для увеличения количества этапов...
Этап 6.7.2.1.1
Дифференцируем .
Этап 6.7.2.1.2
Поскольку является константой относительно , производная по равна .
Этап 6.7.2.1.3
Продифференцируем, используя правило степени, которое гласит, что имеет вид , где .
Этап 6.7.2.1.4
Умножим на .
Этап 6.7.2.2
Переформулируем задачу с помощью и .
Этап 6.7.3
Упростим.
Нажмите для увеличения количества этапов...
Этап 6.7.3.1
Вынесем знак минуса перед дробью.
Этап 6.7.3.2
Объединим и .
Этап 6.7.3.3
Объединим и .
Этап 6.7.4
Поскольку  — константа по отношению к , вынесем из-под знака интеграла.
Этап 6.7.5
Упростим.
Нажмите для увеличения количества этапов...
Этап 6.7.5.1
Умножим на .
Этап 6.7.5.2
Умножим на .
Этап 6.7.6
Поскольку  — константа по отношению к , вынесем из-под знака интеграла.
Этап 6.7.7
Проинтегрируем по частям, используя формулу , где и .
Этап 6.7.8
Упростим.
Нажмите для увеличения количества этапов...
Этап 6.7.8.1
Объединим и .
Этап 6.7.8.2
Объединим и .
Этап 6.7.8.3
Перенесем влево от .
Этап 6.7.8.4
Перенесем влево от .
Этап 6.7.8.5
Объединим и .
Этап 6.7.8.6
Объединим и .
Этап 6.7.8.7
Перенесем влево от .
Этап 6.7.8.8
Перенесем влево от .
Этап 6.7.9
Поскольку  — константа по отношению к , вынесем из-под знака интеграла.
Этап 6.7.10
Упростим.
Нажмите для увеличения количества этапов...
Этап 6.7.10.1
Умножим на .
Этап 6.7.10.2
Умножим на .
Этап 6.7.11
Поскольку  — константа по отношению к , вынесем из-под знака интеграла.
Этап 6.7.12
Интеграл по имеет вид .
Этап 6.7.13
Упростим.
Нажмите для увеличения количества этапов...
Этап 6.7.13.1
Перепишем в виде .
Этап 6.7.13.2
Упростим.
Нажмите для увеличения количества этапов...
Этап 6.7.13.2.1
Объединим и .
Этап 6.7.13.2.2
Объединим и .
Этап 6.7.13.2.3
Перенесем влево от .
Этап 6.7.13.2.4
Перенесем влево от .
Этап 6.7.13.2.5
Объединим и .
Этап 6.7.13.2.6
Объединим и .
Этап 6.7.13.2.7
Добавим и .
Этап 6.7.13.2.8
Умножим на .
Этап 6.7.13.2.9
Добавим и .
Этап 6.8
Разделим каждый член на и упростим.
Нажмите для увеличения количества этапов...
Этап 6.8.1
Разделим каждый член на .
Этап 6.8.2
Упростим левую часть.
Нажмите для увеличения количества этапов...
Этап 6.8.2.1
Сократим общий множитель .
Нажмите для увеличения количества этапов...
Этап 6.8.2.1.1
Сократим общий множитель.
Этап 6.8.2.1.2
Разделим на .
Этап 7
Подставим вместо .
Введите СВОЮ задачу
Для Mathway требуются JavaScript и современный браузер.