Математический анализ Примеры

dydx-y=exy2dydxy=exy2
Этап 1
Чтобы решить дифференциальное уравнение, пусть v=y1-nv=y1n, где nn — показатель степени y2y2.
v=y-1v=y1
Этап 2
Решим уравнение относительно yy.
y=v-1y=v1
Этап 3
Возьмем производную yy по xx.
y=v-1
Этап 4
Возьмем производную v-1 по x.
Нажмите для увеличения количества этапов...
Этап 4.1
Возьмем производную от v-1.
y=ddx[v-1]
Этап 4.2
Перепишем выражение, используя правило отрицательных степеней b-n=1bn.
y=ddx[1v]
Этап 4.3
Продифференцируем, используя правило частного, которое гласит, что ddx[f(x)g(x)] имеет вид g(x)ddx[f(x)]-f(x)ddx[g(x)]g(x)2, где f(x)=1 и g(x)=v.
y=vddx[1]-11ddx[v]v2
Этап 4.4
Продифференцируем, используя правило константы.
Нажмите для увеличения количества этапов...
Этап 4.4.1
Умножим -1 на 1.
y=vddx[1]-ddx[v]v2
Этап 4.4.2
Поскольку 1 является константой относительно x, производная 1 относительно x равна 0.
y=v0-ddx[v]v2
Этап 4.4.3
Упростим выражение.
Нажмите для увеличения количества этапов...
Этап 4.4.3.1
Умножим v на 0.
y=0-ddx[v]v2
Этап 4.4.3.2
Вычтем ddx[v] из 0.
y=-ddx[v]v2
Этап 4.4.3.3
Вынесем знак минуса перед дробью.
y=-ddx[v]v2
y=-ddx[v]v2
y=-ddx[v]v2
Этап 4.5
Перепишем ddx[v] в виде v.
y=-vv2
y=-vv2
Этап 5
Подставим -vv2 вместо dydx и v-1 вместо y в исходное уравнение dydx-y=exy2.
-vv2-v-1=ex(v-1)2
Этап 6
Решим подставленное дифференциальное уравнение.
Нажмите для увеличения количества этапов...
Этап 6.1
Каждый член в -dvdxv2-v-1=ex(v-1)2 умножим на -v2, чтобы убрать дроби.
Нажмите для увеличения количества этапов...
Этап 6.1.1
Умножим каждый член -dvdxv2-v-1=ex(v-1)2 на -v2.
-dvdxv2(-v2)-v-1(-v2)=ex(v-1)2(-v2)
Этап 6.1.2
Упростим левую часть.
Нажмите для увеличения количества этапов...
Этап 6.1.2.1
Упростим каждый член.
Нажмите для увеличения количества этапов...
Этап 6.1.2.1.1
Сократим общий множитель v2.
Нажмите для увеличения количества этапов...
Этап 6.1.2.1.1.1
Перенесем стоящий впереди знак минуса в -dvdxv2 в числитель.
-dvdxv2(-v2)-v-1(-v2)=ex(v-1)2(-v2)
Этап 6.1.2.1.1.2
Вынесем множитель v2 из -v2.
-dvdxv2(v2-1)-v-1(-v2)=ex(v-1)2(-v2)
Этап 6.1.2.1.1.3
Сократим общий множитель.
-dvdxv2(v2-1)-v-1(-v2)=ex(v-1)2(-v2)
Этап 6.1.2.1.1.4
Перепишем это выражение.
-dvdx-1-v-1(-v2)=ex(v-1)2(-v2)
-dvdx-1-v-1(-v2)=ex(v-1)2(-v2)
Этап 6.1.2.1.2
Умножим -1 на -1.
1dvdx-v-1(-v2)=ex(v-1)2(-v2)
Этап 6.1.2.1.3
Умножим dvdx на 1.
dvdx-v-1(-v2)=ex(v-1)2(-v2)
Этап 6.1.2.1.4
Перепишем, используя свойство коммутативности умножения.
dvdx-1-1v-1v2=ex(v-1)2(-v2)
Этап 6.1.2.1.5
Умножим v-1 на v2, сложив экспоненты.
Нажмите для увеличения количества этапов...
Этап 6.1.2.1.5.1
Перенесем v2.
dvdx-1-1(v2v-1)=ex(v-1)2(-v2)
Этап 6.1.2.1.5.2
Применим правило степени aman=am+n для объединения показателей.
dvdx-1-1v2-1=ex(v-1)2(-v2)
Этап 6.1.2.1.5.3
Вычтем 1 из 2.
dvdx-1-1v1=ex(v-1)2(-v2)
dvdx-1-1v1=ex(v-1)2(-v2)
Этап 6.1.2.1.6
Упростим -1-1v1.
dvdx-1-1v=ex(v-1)2(-v2)
Этап 6.1.2.1.7
Умножим -1 на -1.
dvdx+1v=ex(v-1)2(-v2)
Этап 6.1.2.1.8
Умножим v на 1.
dvdx+v=ex(v-1)2(-v2)
dvdx+v=ex(v-1)2(-v2)
dvdx+v=ex(v-1)2(-v2)
Этап 6.1.3
Упростим правую часть.
Нажмите для увеличения количества этапов...
Этап 6.1.3.1
Перепишем, используя свойство коммутативности умножения.
dvdx+v=-ex(v-1)2v2
Этап 6.1.3.2
Перемножим экспоненты в (v-1)2.
Нажмите для увеличения количества этапов...
Этап 6.1.3.2.1
Применим правило степени и перемножим показатели, (am)n=amn.
dvdx+v=-exv-12v2
Этап 6.1.3.2.2
Умножим -1 на 2.
dvdx+v=-exv-2v2
dvdx+v=-exv-2v2
Этап 6.1.3.3
Умножим v-2 на v2, сложив экспоненты.
Нажмите для увеличения количества этапов...
Этап 6.1.3.3.1
Перенесем v2.
dvdx+v=-ex(v2v-2)
Этап 6.1.3.3.2
Применим правило степени aman=am+n для объединения показателей.
dvdx+v=-exv2-2
Этап 6.1.3.3.3
Вычтем 2 из 2.
dvdx+v=-exv0
dvdx+v=-exv0
Этап 6.1.3.4
Упростим -exv0.
dvdx+v=-ex
dvdx+v=-ex
dvdx+v=-ex
Этап 6.2
Интегрирующий множитель определяется по формуле eP(x)dx, где P(x)=1.
Нажмите для увеличения количества этапов...
Этап 6.2.1
Зададим интегрирование.
edx
Этап 6.2.2
Применим правило дифференцирования постоянных функций.
ex+C
Этап 6.2.3
Уберем постоянную интегрирования.
ex
ex
Этап 6.3
Умножим каждый член на интегрирующий множитель ex.
Нажмите для увеличения количества этапов...
Этап 6.3.1
Умножим каждый член на ex.
exdvdx+exv=ex(-ex)
Этап 6.3.2
Перепишем, используя свойство коммутативности умножения.
exdvdx+exv=-exex
Этап 6.3.3
Умножим ex на ex, сложив экспоненты.
Нажмите для увеличения количества этапов...
Этап 6.3.3.1
Перенесем ex.
exdvdx+exv=-(exex)
Этап 6.3.3.2
Применим правило степени aman=am+n для объединения показателей.
exdvdx+exv=-ex+x
Этап 6.3.3.3
Добавим x и x.
exdvdx+exv=-e2x
exdvdx+exv=-e2x
Этап 6.3.4
Изменим порядок множителей в exdvdx+exv=-e2x.
exdvdx+vex=-e2x
exdvdx+vex=-e2x
Этап 6.4
Перепишем левую часть как результат дифференцирования произведения.
ddx[exv]=-e2x
Этап 6.5
Зададим интеграл на каждой стороне.
ddx[exv]dx=-e2xdx
Этап 6.6
Проинтегрируем левую часть.
exv=-e2xdx
Этап 6.7
Проинтегрируем правую часть.
Нажмите для увеличения количества этапов...
Этап 6.7.1
Поскольку -1 — константа по отношению к x, вынесем -1 из-под знака интеграла.
exv=-e2xdx
Этап 6.7.2
Пусть u=2x. Тогда du=2dx, следовательно 12du=dx. Перепишем, используя u и du.
Нажмите для увеличения количества этапов...
Этап 6.7.2.1
Пусть u=2x. Найдем dudx.
Нажмите для увеличения количества этапов...
Этап 6.7.2.1.1
Дифференцируем 2x.
ddx[2x]
Этап 6.7.2.1.2
Поскольку 2 является константой относительно x, производная 2x по x равна 2ddx[x].
2ddx[x]
Этап 6.7.2.1.3
Продифференцируем, используя правило степени, которое гласит, что ddx[xn] имеет вид nxn-1, где n=1.
21
Этап 6.7.2.1.4
Умножим 2 на 1.
2
2
Этап 6.7.2.2
Переформулируем задачу с помощью u и du.
exv=-eu12du
exv=-eu12du
Этап 6.7.3
Объединим eu и 12.
exv=-eu2du
Этап 6.7.4
Поскольку 12 — константа по отношению к u, вынесем 12 из-под знака интеграла.
exv=-(12eudu)
Этап 6.7.5
Интеграл eu по u имеет вид eu.
exv=-12(eu+C)
Этап 6.7.6
Упростим.
exv=-12eu+C
Этап 6.7.7
Заменим все вхождения u на 2x.
exv=-12e2x+C
exv=-12e2x+C
Этап 6.8
Разделим каждый член exv=-12e2x+C на ex и упростим.
Нажмите для увеличения количества этапов...
Этап 6.8.1
Разделим каждый член exv=-12e2x+C на ex.
exvex=-12e2xex+Cex
Этап 6.8.2
Упростим левую часть.
Нажмите для увеличения количества этапов...
Этап 6.8.2.1
Сократим общий множитель ex.
Нажмите для увеличения количества этапов...
Этап 6.8.2.1.1
Сократим общий множитель.
exvex=-12e2xex+Cex
Этап 6.8.2.1.2
Разделим v на 1.
v=-12e2xex+Cex
v=-12e2xex+Cex
v=-12e2xex+Cex
Этап 6.8.3
Упростим правую часть.
Нажмите для увеличения количества этапов...
Этап 6.8.3.1
Упростим каждый член.
Нажмите для увеличения количества этапов...
Этап 6.8.3.1.1
Сократим общий множитель e2x и ex.
Нажмите для увеличения количества этапов...
Этап 6.8.3.1.1.1
Вынесем множитель ex из -12e2x.
v=ex(-12ex)ex+Cex
Этап 6.8.3.1.1.2
Сократим общие множители.
Нажмите для увеличения количества этапов...
Этап 6.8.3.1.1.2.1
Умножим на 1.
v=ex(-12ex)ex1+Cex
Этап 6.8.3.1.1.2.2
Сократим общий множитель.
v=ex(-12ex)ex1+Cex
Этап 6.8.3.1.1.2.3
Перепишем это выражение.
v=-12ex1+Cex
Этап 6.8.3.1.1.2.4
Разделим -12ex на 1.
v=-12ex+Cex
v=-12ex+Cex
v=-12ex+Cex
Этап 6.8.3.1.2
Объединим ex и 12.
v=-ex2+Cex
v=-ex2+Cex
v=-ex2+Cex
v=-ex2+Cex
v=-ex2+Cex
Этап 7
Подставим y-1 вместо v.
y-1=-ex2+Cex
Введите СВОЮ задачу
Для Mathway требуются JavaScript и современный браузер.
 [x2  12  π  xdx ] 
AmazonPay