Математический анализ Примеры

,
Этап 1
Разделим переменные.
Нажмите для увеличения количества этапов...
Этап 1.1
Разделим каждый член на и упростим.
Нажмите для увеличения количества этапов...
Этап 1.1.1
Разделим каждый член на .
Этап 1.1.2
Упростим левую часть.
Нажмите для увеличения количества этапов...
Этап 1.1.2.1
Сократим общий множитель .
Нажмите для увеличения количества этапов...
Этап 1.1.2.1.1
Сократим общий множитель.
Этап 1.1.2.1.2
Разделим на .
Этап 1.1.3
Упростим правую часть.
Нажмите для увеличения количества этапов...
Этап 1.1.3.1
Вынесем знак минуса перед дробью.
Этап 1.2
Объединим числители над общим знаменателем.
Этап 1.3
Умножим обе части на .
Этап 1.4
Сократим общий множитель .
Нажмите для увеличения количества этапов...
Этап 1.4.1
Сократим общий множитель.
Этап 1.4.2
Перепишем это выражение.
Этап 1.5
Перепишем уравнение.
Этап 2
Проинтегрируем обе части.
Нажмите для увеличения количества этапов...
Этап 2.1
Зададим интеграл на каждой стороне.
Этап 2.2
Проинтегрируем левую часть.
Нажмите для увеличения количества этапов...
Этап 2.2.1
Пусть . Тогда , следовательно . Перепишем, используя и .
Нажмите для увеличения количества этапов...
Этап 2.2.1.1
Пусть . Найдем .
Нажмите для увеличения количества этапов...
Этап 2.2.1.1.1
Дифференцируем .
Этап 2.2.1.1.2
По правилу суммы производная по имеет вид .
Этап 2.2.1.1.3
Найдем значение .
Нажмите для увеличения количества этапов...
Этап 2.2.1.1.3.1
Поскольку является константой относительно , производная по равна .
Этап 2.2.1.1.3.2
Продифференцируем, используя правило степени, которое гласит, что имеет вид , где .
Этап 2.2.1.1.3.3
Умножим на .
Этап 2.2.1.1.4
Продифференцируем, используя правило константы.
Нажмите для увеличения количества этапов...
Этап 2.2.1.1.4.1
Поскольку является константой относительно , производная относительно равна .
Этап 2.2.1.1.4.2
Добавим и .
Этап 2.2.1.2
Переформулируем задачу с помощью и .
Этап 2.2.2
Упростим.
Нажмите для увеличения количества этапов...
Этап 2.2.2.1
Умножим на .
Этап 2.2.2.2
Перенесем влево от .
Этап 2.2.3
Поскольку  — константа по отношению к , вынесем из-под знака интеграла.
Этап 2.2.4
Интеграл по имеет вид .
Этап 2.2.5
Упростим.
Этап 2.2.6
Заменим все вхождения на .
Этап 2.3
Интеграл по имеет вид .
Этап 2.4
Сгруппируем постоянную интегрирования в правой части как .
Этап 3
Решим относительно .
Нажмите для увеличения количества этапов...
Этап 3.1
Умножим обе части уравнения на .
Этап 3.2
Упростим обе части уравнения.
Нажмите для увеличения количества этапов...
Этап 3.2.1
Упростим левую часть.
Нажмите для увеличения количества этапов...
Этап 3.2.1.1
Упростим .
Нажмите для увеличения количества этапов...
Этап 3.2.1.1.1
Объединим и .
Этап 3.2.1.1.2
Сократим общий множитель .
Нажмите для увеличения количества этапов...
Этап 3.2.1.1.2.1
Сократим общий множитель.
Этап 3.2.1.1.2.2
Перепишем это выражение.
Этап 3.2.2
Упростим правую часть.
Нажмите для увеличения количества этапов...
Этап 3.2.2.1
Применим свойство дистрибутивности.
Этап 3.3
Перенесем все члены с логарифмами в левую часть уравнения.
Этап 3.4
Упростим левую часть.
Нажмите для увеличения количества этапов...
Этап 3.4.1
Упростим .
Нажмите для увеличения количества этапов...
Этап 3.4.1.1
Упростим каждый член.
Нажмите для увеличения количества этапов...
Этап 3.4.1.1.1
Упростим путем переноса под логарифм.
Этап 3.4.1.1.2
Уберем знак модуля в , поскольку любое число в четной степени всегда положительное.
Этап 3.4.1.2
Используем формулу разности логарифмов с одинаковым основанием: .
Этап 3.5
Чтобы решить относительно , перепишем уравнение, используя свойства логарифмов.
Этап 3.6
Перепишем в экспоненциальной форме, используя определение логарифма. Если и  — положительные вещественные числа и , то эквивалентно .
Этап 3.7
Решим относительно .
Нажмите для увеличения количества этапов...
Этап 3.7.1
Перепишем уравнение в виде .
Этап 3.7.2
Умножим обе части на .
Этап 3.7.3
Упростим.
Нажмите для увеличения количества этапов...
Этап 3.7.3.1
Упростим левую часть.
Нажмите для увеличения количества этапов...
Этап 3.7.3.1.1
Сократим общий множитель .
Нажмите для увеличения количества этапов...
Этап 3.7.3.1.1.1
Сократим общий множитель.
Этап 3.7.3.1.1.2
Перепишем это выражение.
Этап 3.7.3.2
Упростим правую часть.
Нажмите для увеличения количества этапов...
Этап 3.7.3.2.1
Изменим порядок множителей в .
Этап 3.7.4
Решим относительно .
Нажмите для увеличения количества этапов...
Этап 3.7.4.1
Избавимся от знаков модуля. В правой части уравнения возникнет знак , поскольку .
Этап 3.7.4.2
Добавим к обеим частям уравнения.
Этап 3.7.4.3
Разделим каждый член на и упростим.
Нажмите для увеличения количества этапов...
Этап 3.7.4.3.1
Разделим каждый член на .
Этап 3.7.4.3.2
Упростим левую часть.
Нажмите для увеличения количества этапов...
Этап 3.7.4.3.2.1
Сократим общий множитель .
Нажмите для увеличения количества этапов...
Этап 3.7.4.3.2.1.1
Сократим общий множитель.
Этап 3.7.4.3.2.1.2
Разделим на .
Этап 4
Сгруппируем постоянные члены.
Нажмите для увеличения количества этапов...
Этап 4.1
Упростим постоянную интегрирования.
Этап 4.2
Объединим константы с плюсом или минусом.
Этап 5
Используем начальное условие, чтобы найти значение , подставив вместо и вместо в .
Этап 6
Решим относительно .
Нажмите для увеличения количества этапов...
Этап 6.1
Перепишем уравнение в виде .
Этап 6.2
Упростим каждый член.
Нажмите для увеличения количества этапов...
Этап 6.2.1
Единица в любой степени равна единице.
Этап 6.2.2
Умножим на .
Этап 6.3
Перенесем все члены без в правую часть уравнения.
Нажмите для увеличения количества этапов...
Этап 6.3.1
Вычтем из обеих частей уравнения.
Этап 6.3.2
Запишем в виде дроби с общим знаменателем.
Этап 6.3.3
Объединим числители над общим знаменателем.
Этап 6.3.4
Вычтем из .
Этап 6.4
Поскольку выражения в каждой части уравнения имеют одинаковые знаменатели, числители должны быть равны.
Этап 7
Подставим вместо в и упростим.
Нажмите для увеличения количества этапов...
Этап 7.1
Подставим вместо .
Этап 7.2
Умножим на .
Введите СВОЮ задачу
Для Mathway требуются JavaScript и современный браузер.