Математический анализ Примеры

Этап 1
Продифференцируем обе части уравнения.
Этап 2
Продифференцируем левую часть уравнения.
Нажмите для увеличения количества этапов...
Этап 2.1
По правилу суммы производная по имеет вид .
Этап 2.2
Найдем значение .
Нажмите для увеличения количества этапов...
Этап 2.2.1
Продифференцируем, используя правило умножения, которое гласит, что имеет вид , где и .
Этап 2.2.2
Продифференцируем, используя правило степени, которое гласит, что имеет вид , где .
Этап 2.2.3
Продифференцируем, используя цепное правило (правило дифференцирования сложной функции), которое гласит, что имеет вид , где и .
Нажмите для увеличения количества этапов...
Этап 2.2.3.1
Чтобы применить цепное правило, зададим как .
Этап 2.2.3.2
Продифференцируем, используя правило степени, которое гласит, что имеет вид , где .
Этап 2.2.3.3
Заменим все вхождения на .
Этап 2.2.4
Перепишем в виде .
Этап 2.2.5
Умножим на .
Этап 2.2.6
Перенесем влево от .
Этап 2.3
Продифференцируем, используя правило степени.
Нажмите для увеличения количества этапов...
Этап 2.3.1
Продифференцируем, используя правило степени, которое гласит, что имеет вид , где .
Этап 2.3.2
Изменим порядок членов.
Этап 3
Продифференцируем правую часть уравнения.
Нажмите для увеличения количества этапов...
Этап 3.1
Продифференцируем.
Нажмите для увеличения количества этапов...
Этап 3.1.1
По правилу суммы производная по имеет вид .
Этап 3.1.2
Поскольку является константой относительно , производная относительно равна .
Этап 3.2
Найдем значение .
Нажмите для увеличения количества этапов...
Этап 3.2.1
Поскольку является константой относительно , производная по равна .
Этап 3.2.2
Перепишем в виде .
Этап 3.3
Добавим и .
Этап 4
Преобразуем уравнение, приравняв левую часть к правой.
Этап 5
Решим относительно .
Нажмите для увеличения количества этапов...
Этап 5.1
Вычтем из обеих частей уравнения.
Этап 5.2
Перенесем все члены без в правую часть уравнения.
Нажмите для увеличения количества этапов...
Этап 5.2.1
Вычтем из обеих частей уравнения.
Этап 5.2.2
Вычтем из обеих частей уравнения.
Этап 5.3
Вынесем множитель из .
Нажмите для увеличения количества этапов...
Этап 5.3.1
Вынесем множитель из .
Этап 5.3.2
Вынесем множитель из .
Этап 5.3.3
Вынесем множитель из .
Этап 5.4
Разделим каждый член на и упростим.
Нажмите для увеличения количества этапов...
Этап 5.4.1
Разделим каждый член на .
Этап 5.4.2
Упростим левую часть.
Нажмите для увеличения количества этапов...
Этап 5.4.2.1
Сократим общий множитель .
Нажмите для увеличения количества этапов...
Этап 5.4.2.1.1
Сократим общий множитель.
Этап 5.4.2.1.2
Перепишем это выражение.
Этап 5.4.2.2
Сократим общий множитель .
Нажмите для увеличения количества этапов...
Этап 5.4.2.2.1
Сократим общий множитель.
Этап 5.4.2.2.2
Разделим на .
Этап 5.4.3
Упростим правую часть.
Нажмите для увеличения количества этапов...
Этап 5.4.3.1
Упростим каждый член.
Нажмите для увеличения количества этапов...
Этап 5.4.3.1.1
Сократим общий множитель и .
Нажмите для увеличения количества этапов...
Этап 5.4.3.1.1.1
Вынесем множитель из .
Этап 5.4.3.1.1.2
Сократим общие множители.
Нажмите для увеличения количества этапов...
Этап 5.4.3.1.1.2.1
Сократим общий множитель.
Этап 5.4.3.1.1.2.2
Перепишем это выражение.
Этап 5.4.3.1.2
Вынесем знак минуса перед дробью.
Этап 5.4.3.1.3
Вынесем знак минуса перед дробью.
Этап 5.4.3.2
Чтобы записать в виде дроби с общим знаменателем, умножим ее на .
Этап 5.4.3.3
Запишем каждое выражение с общим знаменателем , умножив на подходящий множитель .
Нажмите для увеличения количества этапов...
Этап 5.4.3.3.1
Умножим на .
Этап 5.4.3.3.2
Изменим порядок множителей в .
Этап 5.4.3.4
Объединим числители над общим знаменателем.
Этап 5.4.3.5
Умножим на .
Этап 5.4.3.6
Вынесем множитель из .
Этап 5.4.3.7
Вынесем множитель из .
Этап 5.4.3.8
Вынесем множитель из .
Этап 5.4.3.9
Упростим выражение.
Нажмите для увеличения количества этапов...
Этап 5.4.3.9.1
Перепишем в виде .
Этап 5.4.3.9.2
Вынесем знак минуса перед дробью.
Этап 6
Заменим на .
Введите СВОЮ задачу
Для Mathway требуются JavaScript и современный браузер.