Математический анализ Примеры

,
Этап 1
Среднее квадратическое значение (ср. кв.) функции на заданном интервале равно квадратному корню из среднеарифметического значения квадратов исходных значений.
Этап 2
Подставим фактические значения в формулу для среднего квадратического функции.
Этап 3
Найдем интеграл.
Нажмите для увеличения количества этапов...
Этап 3.1
Пусть . Тогда . Перепишем, используя и .
Нажмите для увеличения количества этапов...
Этап 3.1.1
Пусть . Найдем .
Нажмите для увеличения количества этапов...
Этап 3.1.1.1
Дифференцируем .
Этап 3.1.1.2
По правилу суммы производная по имеет вид .
Этап 3.1.1.3
Продифференцируем, используя правило степени, которое гласит, что имеет вид , где .
Этап 3.1.1.4
Поскольку является константой относительно , производная относительно равна .
Этап 3.1.1.5
Добавим и .
Этап 3.1.2
Подставим нижнее предельное значение вместо в .
Этап 3.1.3
Вычтем из .
Этап 3.1.4
Подставим верхнее предельное значение вместо в .
Этап 3.1.5
Вычтем из .
Этап 3.1.6
Значения, найденные для и , будут использованы для вычисления данного определенного интеграла.
Этап 3.1.7
Переформулируем задачу, используя , и новые пределы интегрирования.
Этап 3.2
По правилу степени интеграл по имеет вид .
Этап 3.3
Подставим и упростим.
Нажмите для увеличения количества этапов...
Этап 3.3.1
Найдем значение в и в .
Этап 3.3.2
Упростим.
Нажмите для увеличения количества этапов...
Этап 3.3.2.1
Возведем в степень .
Этап 3.3.2.2
Объединим и .
Этап 3.3.2.3
Возведение в любую положительную степень дает .
Этап 3.3.2.4
Умножим на .
Этап 3.3.2.5
Умножим на .
Этап 3.3.2.6
Добавим и .
Этап 4
Упростим формулу среднего квадратического значения.
Нажмите для увеличения количества этапов...
Этап 4.1
Умножим на .
Этап 4.2
Вычтем из .
Этап 4.3
Сократим выражение путем отбрасывания общих множителей.
Нажмите для увеличения количества этапов...
Этап 4.3.1
Вынесем множитель из .
Этап 4.3.2
Вынесем множитель из .
Этап 4.3.3
Сократим общий множитель.
Этап 4.3.4
Перепишем это выражение.
Этап 4.4
Перепишем в виде .
Этап 4.5
Упростим числитель.
Нажмите для увеличения количества этапов...
Этап 4.5.1
Перепишем в виде .
Этап 4.5.2
Вынесем члены из-под знака корня, предполагая, что вещественные числа являются положительными.
Этап 4.6
Умножим на .
Этап 4.7
Объединим и упростим знаменатель.
Нажмите для увеличения количества этапов...
Этап 4.7.1
Умножим на .
Этап 4.7.2
Возведем в степень .
Этап 4.7.3
Возведем в степень .
Этап 4.7.4
Применим правило степени для объединения показателей.
Этап 4.7.5
Добавим и .
Этап 4.7.6
Перепишем в виде .
Нажмите для увеличения количества этапов...
Этап 4.7.6.1
С помощью запишем в виде .
Этап 4.7.6.2
Применим правило степени и перемножим показатели, .
Этап 4.7.6.3
Объединим и .
Этап 4.7.6.4
Сократим общий множитель .
Нажмите для увеличения количества этапов...
Этап 4.7.6.4.1
Сократим общий множитель.
Этап 4.7.6.4.2
Перепишем это выражение.
Этап 4.7.6.5
Найдем экспоненту.
Этап 5
Результат можно представить в различном виде.
Точная форма:
Десятичная форма:
Этап 6
Введите СВОЮ задачу
Для Mathway требуются JavaScript и современный браузер.