Математический анализ Примеры
,
Этап 1
Этап 1.1
Область определения выражения ― все действительные числа, за исключением случаев, когда выражение не определено. В данном случае не существует вещественного числа, при котором выражение не определено.
Интервальное представление:
Обозначение построения множества:
Этап 1.2
— непрерывное выражение в области .
Функция является непрерывной.
Функция является непрерывной.
Этап 2
Этап 2.1
Найдем производную.
Этап 2.1.1
Найдем первую производную.
Этап 2.1.1.1
По правилу суммы производная по имеет вид .
Этап 2.1.1.2
Найдем значение .
Этап 2.1.1.2.1
Поскольку является константой относительно , производная по равна .
Этап 2.1.1.2.2
Продифференцируем, используя правило степени, которое гласит, что имеет вид , где .
Этап 2.1.1.2.3
Умножим на .
Этап 2.1.1.3
Продифференцируем, используя правило константы.
Этап 2.1.1.3.1
Поскольку является константой относительно , производная относительно равна .
Этап 2.1.1.3.2
Добавим и .
Этап 2.1.2
Первая производная по равна .
Этап 2.2
Выясним, является ли производная непрерывной на .
Этап 2.2.1
Область определения выражения ― все действительные числа, за исключением случаев, когда выражение не определено. В данном случае не существует вещественного числа, при котором выражение не определено.
Интервальное представление:
Обозначение построения множества:
Этап 2.2.2
— непрерывное выражение в области .
Функция является непрерывной.
Функция является непрерывной.
Этап 2.3
Функция является дифференцируемой на , поскольку производная является непрерывной на .
Функция является дифференцируемой.
Функция является дифференцируемой.
Этап 3
Для нахождения длины дуги необходима непрерывность функции и ее производной на отрезке .
Функция и ее производная являются непрерывными на замкнутом интервале .
Этап 4
Этап 4.1
По правилу суммы производная по имеет вид .
Этап 4.2
Найдем значение .
Этап 4.2.1
Поскольку является константой относительно , производная по равна .
Этап 4.2.2
Продифференцируем, используя правило степени, которое гласит, что имеет вид , где .
Этап 4.2.3
Умножим на .
Этап 4.3
Продифференцируем, используя правило константы.
Этап 4.3.1
Поскольку является константой относительно , производная относительно равна .
Этап 4.3.2
Добавим и .
Этап 5
Чтобы найти длину дуги графика функции, воспользуемся формулой .
Этап 6
Этап 6.1
Применим правило дифференцирования постоянных функций.
Этап 6.2
Подставим и упростим.
Этап 6.2.1
Найдем значение в и в .
Этап 6.2.2
Упростим.
Этап 6.2.2.1
Перенесем влево от .
Этап 6.2.2.2
Умножим на .
Этап 6.2.2.3
Умножим на .
Этап 6.2.2.4
Добавим и .
Этап 7
Результат можно представить в различном виде.
Точная форма:
Десятичная форма:
Этап 8