Математический анализ Примеры

Этап 1
Найдем первую производную.
Нажмите для увеличения количества этапов...
Этап 1.1
Продифференцируем, используя правило степени, которое гласит, что имеет вид , где .
Этап 1.2
Первая производная по равна .
Этап 2
Приравняем первую производную к , затем найдем решение уравнения .
Нажмите для увеличения количества этапов...
Этап 2.1
Пусть первая производная равна .
Этап 2.2
Разделим каждый член на и упростим.
Нажмите для увеличения количества этапов...
Этап 2.2.1
Разделим каждый член на .
Этап 2.2.2
Упростим левую часть.
Нажмите для увеличения количества этапов...
Этап 2.2.2.1
Сократим общий множитель .
Нажмите для увеличения количества этапов...
Этап 2.2.2.1.1
Сократим общий множитель.
Этап 2.2.2.1.2
Разделим на .
Этап 2.2.3
Упростим правую часть.
Нажмите для увеличения количества этапов...
Этап 2.2.3.1
Разделим на .
Этап 2.3
Возьмем указанный корень от обеих частей уравнения, чтобы исключить член со степенью в левой части.
Этап 2.4
Упростим .
Нажмите для увеличения количества этапов...
Этап 2.4.1
Перепишем в виде .
Этап 2.4.2
Вынесем члены из-под знака корня, предполагая, что вещественные числа являются положительными.
Этап 2.4.3
Плюс или минус равно .
Этап 3
Найдем значения, при которых производная не определена.
Нажмите для увеличения количества этапов...
Этап 3.1
Область определения выражения ― все действительные числа, за исключением случаев, когда выражение не определено. В данном случае не существует вещественного числа, при котором выражение не определено.
Этап 4
Вычислим для каждого значения , для которого производная равна или не определена.
Нажмите для увеличения количества этапов...
Этап 4.1
Найдем значение в .
Нажмите для увеличения количества этапов...
Этап 4.1.1
Подставим вместо .
Этап 4.1.2
Возведение в любую положительную степень дает .
Этап 4.2
Перечислим все точки.
Этап 5
Введите СВОЮ задачу
Для Mathway требуются JavaScript и современный браузер.