Математический анализ Примеры

Найти абсолютный максимум и абсолютный минимум на интервале
,
Этап 1
Найдем критические точки.
Нажмите для увеличения количества этапов...
Этап 1.1
Найдем первую производную.
Нажмите для увеличения количества этапов...
Этап 1.1.1
Найдем первую производную.
Нажмите для увеличения количества этапов...
Этап 1.1.1.1
Продифференцируем.
Нажмите для увеличения количества этапов...
Этап 1.1.1.1.1
По правилу суммы производная по имеет вид .
Этап 1.1.1.1.2
Продифференцируем, используя правило степени, которое гласит, что имеет вид , где .
Этап 1.1.1.2
Найдем значение .
Нажмите для увеличения количества этапов...
Этап 1.1.1.2.1
Поскольку является константой относительно , производная по равна .
Этап 1.1.1.2.2
Продифференцируем, используя правило степени, которое гласит, что имеет вид , где .
Этап 1.1.1.2.3
Умножим на .
Этап 1.1.2
Первая производная по равна .
Этап 1.2
Приравняем первую производную к , затем найдем решение уравнения .
Нажмите для увеличения количества этапов...
Этап 1.2.1
Пусть первая производная равна .
Этап 1.2.2
Вынесем множитель из .
Нажмите для увеличения количества этапов...
Этап 1.2.2.1
Вынесем множитель из .
Этап 1.2.2.2
Вынесем множитель из .
Этап 1.2.2.3
Вынесем множитель из .
Этап 1.2.3
Если любой отдельный множитель в левой части уравнения равен , все выражение равно .
Этап 1.2.4
Приравняем к .
Этап 1.2.5
Приравняем к , затем решим относительно .
Нажмите для увеличения количества этапов...
Этап 1.2.5.1
Приравняем к .
Этап 1.2.5.2
Решим относительно .
Нажмите для увеличения количества этапов...
Этап 1.2.5.2.1
Добавим к обеим частям уравнения.
Этап 1.2.5.2.2
Возьмем указанный корень от обеих частей уравнения, чтобы исключить член со степенью в левой части.
Этап 1.2.5.2.3
Полное решение является результатом как положительных, так и отрицательных частей решения.
Нажмите для увеличения количества этапов...
Этап 1.2.5.2.3.1
Сначала с помощью положительного значения найдем первое решение.
Этап 1.2.5.2.3.2
Затем, используя отрицательное значение , найдем второе решение.
Этап 1.2.5.2.3.3
Полное решение является результатом как положительных, так и отрицательных частей решения.
Этап 1.2.6
Окончательным решением являются все значения, при которых верно.
Этап 1.3
Найдем значения, при которых производная не определена.
Нажмите для увеличения количества этапов...
Этап 1.3.1
Область определения выражения ― все действительные числа, за исключением случаев, когда выражение не определено. В данном случае не существует вещественного числа, при котором выражение не определено.
Этап 1.4
Вычислим для каждого значения , для которого производная равна или не определена.
Нажмите для увеличения количества этапов...
Этап 1.4.1
Найдем значение в .
Нажмите для увеличения количества этапов...
Этап 1.4.1.1
Подставим вместо .
Этап 1.4.1.2
Упростим.
Нажмите для увеличения количества этапов...
Этап 1.4.1.2.1
Упростим каждый член.
Нажмите для увеличения количества этапов...
Этап 1.4.1.2.1.1
Возведение в любую положительную степень дает .
Этап 1.4.1.2.1.2
Возведение в любую положительную степень дает .
Этап 1.4.1.2.1.3
Умножим на .
Этап 1.4.1.2.2
Добавим и .
Этап 1.4.2
Найдем значение в .
Нажмите для увеличения количества этапов...
Этап 1.4.2.1
Подставим вместо .
Этап 1.4.2.2
Упростим.
Нажмите для увеличения количества этапов...
Этап 1.4.2.2.1
Упростим каждый член.
Нажмите для увеличения количества этапов...
Этап 1.4.2.2.1.1
Перепишем в виде .
Нажмите для увеличения количества этапов...
Этап 1.4.2.2.1.1.1
С помощью запишем в виде .
Этап 1.4.2.2.1.1.2
Применим правило степени и перемножим показатели, .
Этап 1.4.2.2.1.1.3
Объединим и .
Этап 1.4.2.2.1.1.4
Сократим общий множитель и .
Нажмите для увеличения количества этапов...
Этап 1.4.2.2.1.1.4.1
Вынесем множитель из .
Этап 1.4.2.2.1.1.4.2
Сократим общие множители.
Нажмите для увеличения количества этапов...
Этап 1.4.2.2.1.1.4.2.1
Вынесем множитель из .
Этап 1.4.2.2.1.1.4.2.2
Сократим общий множитель.
Этап 1.4.2.2.1.1.4.2.3
Перепишем это выражение.
Этап 1.4.2.2.1.1.4.2.4
Разделим на .
Этап 1.4.2.2.1.2
Возведем в степень .
Этап 1.4.2.2.1.3
Перепишем в виде .
Нажмите для увеличения количества этапов...
Этап 1.4.2.2.1.3.1
С помощью запишем в виде .
Этап 1.4.2.2.1.3.2
Применим правило степени и перемножим показатели, .
Этап 1.4.2.2.1.3.3
Объединим и .
Этап 1.4.2.2.1.3.4
Сократим общий множитель .
Нажмите для увеличения количества этапов...
Этап 1.4.2.2.1.3.4.1
Сократим общий множитель.
Этап 1.4.2.2.1.3.4.2
Перепишем это выражение.
Этап 1.4.2.2.1.3.5
Найдем экспоненту.
Этап 1.4.2.2.1.4
Умножим на .
Этап 1.4.2.2.2
Вычтем из .
Этап 1.4.3
Найдем значение в .
Нажмите для увеличения количества этапов...
Этап 1.4.3.1
Подставим вместо .
Этап 1.4.3.2
Упростим.
Нажмите для увеличения количества этапов...
Этап 1.4.3.2.1
Упростим каждый член.
Нажмите для увеличения количества этапов...
Этап 1.4.3.2.1.1
Применим правило умножения к .
Этап 1.4.3.2.1.2
Возведем в степень .
Этап 1.4.3.2.1.3
Умножим на .
Этап 1.4.3.2.1.4
Перепишем в виде .
Нажмите для увеличения количества этапов...
Этап 1.4.3.2.1.4.1
С помощью запишем в виде .
Этап 1.4.3.2.1.4.2
Применим правило степени и перемножим показатели, .
Этап 1.4.3.2.1.4.3
Объединим и .
Этап 1.4.3.2.1.4.4
Сократим общий множитель и .
Нажмите для увеличения количества этапов...
Этап 1.4.3.2.1.4.4.1
Вынесем множитель из .
Этап 1.4.3.2.1.4.4.2
Сократим общие множители.
Нажмите для увеличения количества этапов...
Этап 1.4.3.2.1.4.4.2.1
Вынесем множитель из .
Этап 1.4.3.2.1.4.4.2.2
Сократим общий множитель.
Этап 1.4.3.2.1.4.4.2.3
Перепишем это выражение.
Этап 1.4.3.2.1.4.4.2.4
Разделим на .
Этап 1.4.3.2.1.5
Возведем в степень .
Этап 1.4.3.2.1.6
Применим правило умножения к .
Этап 1.4.3.2.1.7
Возведем в степень .
Этап 1.4.3.2.1.8
Умножим на .
Этап 1.4.3.2.1.9
Перепишем в виде .
Нажмите для увеличения количества этапов...
Этап 1.4.3.2.1.9.1
С помощью запишем в виде .
Этап 1.4.3.2.1.9.2
Применим правило степени и перемножим показатели, .
Этап 1.4.3.2.1.9.3
Объединим и .
Этап 1.4.3.2.1.9.4
Сократим общий множитель .
Нажмите для увеличения количества этапов...
Этап 1.4.3.2.1.9.4.1
Сократим общий множитель.
Этап 1.4.3.2.1.9.4.2
Перепишем это выражение.
Этап 1.4.3.2.1.9.5
Найдем экспоненту.
Этап 1.4.3.2.1.10
Умножим на .
Этап 1.4.3.2.2
Вычтем из .
Этап 1.4.4
Перечислим все точки.
Этап 2
Вычислим на включенных конечных точках.
Нажмите для увеличения количества этапов...
Этап 2.1
Найдем значение в .
Нажмите для увеличения количества этапов...
Этап 2.1.1
Подставим вместо .
Этап 2.1.2
Упростим.
Нажмите для увеличения количества этапов...
Этап 2.1.2.1
Упростим каждый член.
Нажмите для увеличения количества этапов...
Этап 2.1.2.1.1
Возведем в степень .
Этап 2.1.2.1.2
Возведем в степень .
Этап 2.1.2.1.3
Умножим на .
Этап 2.1.2.2
Вычтем из .
Этап 2.2
Найдем значение в .
Нажмите для увеличения количества этапов...
Этап 2.2.1
Подставим вместо .
Этап 2.2.2
Упростим.
Нажмите для увеличения количества этапов...
Этап 2.2.2.1
Упростим каждый член.
Нажмите для увеличения количества этапов...
Этап 2.2.2.1.1
Возведем в степень .
Этап 2.2.2.1.2
Возведем в степень .
Этап 2.2.2.1.3
Умножим на .
Этап 2.2.2.2
Вычтем из .
Этап 2.3
Перечислим все точки.
Этап 3
Сравним значения , найденные для каждого значения , чтобы определить абсолютные максимум и минимум на заданном интервале. Максимум будет наблюдаться при наибольшем значении , а минимум — при наименьшем значении .
Абсолютный максимум:
Абсолютный минимум:
Этап 4
Введите СВОЮ задачу
Для Mathway требуются JavaScript и современный браузер.