Математический анализ Примеры
Этап 1
Примем как функцию .
Этап 2
Этап 2.1
Поскольку является константой относительно , производная по равна .
Этап 2.2
Продифференцируем, используя правило степени, которое гласит, что имеет вид , где .
Этап 2.3
Умножим на .
Этап 3
Этап 3.1
Разделим каждый член на .
Этап 3.2
Упростим левую часть.
Этап 3.2.1
Сократим общий множитель .
Этап 3.2.1.1
Сократим общий множитель.
Этап 3.2.1.2
Разделим на .
Этап 3.3
Упростим правую часть.
Этап 3.3.1
Разделим на .
Этап 4
Этап 4.1
Заменим в этом выражении переменную на .
Этап 4.2
Упростим результат.
Этап 4.2.1
Возведение в любую положительную степень дает .
Этап 4.2.2
Умножим на .
Этап 4.2.3
Окончательный ответ: .
Этап 5
Горизонтальная касательной к графику функции : .
Этап 6