Примеры
S([abc])=[a-2b-c3a-b+2ca+b+2c]S⎛⎜⎝⎡⎢⎣abc⎤⎥⎦⎞⎟⎠=⎡⎢⎣a−2b−c3a−b+2ca+b+2c⎤⎥⎦
Этап 1
Ядро преобразования — это множество векторов (прообраз), которые преобразуются в нулевой вектор.
[a-2b-c3a-b+2ca+b+2c]=0
Этап 2
Составим систему уравнений из векторного уравнения.
a-2b-c=0
3a-b+2c=0
a+b+2c=0
Этап 3
Write the system as a matrix.
[1-2-103-1201120]
Этап 4
Этап 4.1
Perform the row operation R2=R2-3R1 to make the entry at 2,1 a 0.
Этап 4.1.1
Perform the row operation R2=R2-3R1 to make the entry at 2,1 a 0.
[1-2-103-3⋅1-1-3⋅-22-3⋅-10-3⋅01120]
Этап 4.1.2
Упростим R2.
[1-2-1005501120]
[1-2-1005501120]
Этап 4.2
Perform the row operation R3=R3-R1 to make the entry at 3,1 a 0.
Этап 4.2.1
Perform the row operation R3=R3-R1 to make the entry at 3,1 a 0.
[1-2-1005501-11+22+10-0]
Этап 4.2.2
Упростим R3.
[1-2-1005500330]
[1-2-1005500330]
Этап 4.3
Multiply each element of R2 by 15 to make the entry at 2,2 a 1.
Этап 4.3.1
Multiply each element of R2 by 15 to make the entry at 2,2 a 1.
[1-2-10055555050330]
Этап 4.3.2
Упростим R2.
[1-2-1001100330]
[1-2-1001100330]
Этап 4.4
Perform the row operation R3=R3-3R2 to make the entry at 3,2 a 0.
Этап 4.4.1
Perform the row operation R3=R3-3R2 to make the entry at 3,2 a 0.
[1-2-1001100-3⋅03-3⋅13-3⋅10-3⋅0]
Этап 4.4.2
Упростим R3.
[1-2-1001100000]
[1-2-1001100000]
Этап 4.5
Perform the row operation R1=R1+2R2 to make the entry at 1,2 a 0.
Этап 4.5.1
Perform the row operation R1=R1+2R2 to make the entry at 1,2 a 0.
[1+2⋅0-2+2⋅1-1+2⋅10+2⋅001100000]
Этап 4.5.2
Упростим R1.
[101001100000]
[101001100000]
[101001100000]
Этап 5
Use the result matrix to declare the final solution to the system of equations.
a+c=0
b+c=0
0=0
Этап 6
Write a solution vector by solving in terms of the free variables in each row.
[abc]=[-c-cc]
Этап 7
Write the solution as a linear combination of vectors.
[abc]=c[-1-11]
Этап 8
Write as a solution set.
{c[-1-11]|c∈R}
Этап 9
The solution is the set of vectors created from the free variables of the system.
{[-1-11]}
Этап 10
Ядро S представляет собой подпространство {[-1-11]}.
K(S)={[-1-11]}