Алгебра Примеры

Нахождение базиса и размерности нулевого пространства матрицы
[-132110110]132110110
Этап 1
Запишем в виде расширенной матрицы для Ax=0Ax=0.
[-132011001100]⎢ ⎢132011001100⎥ ⎥
Этап 2
Приведем матрицу к стандартной форме по строкам.
Нажмите для увеличения количества этапов...
Этап 2.1
Умножим каждый элемент R1R1 на -11, чтобы сделать значение в 1,11,1 равным 11.
Нажмите для увеличения количества этапов...
Этап 2.1.1
Умножим каждый элемент R1R1 на -11, чтобы сделать значение в 1,11,1 равным 11.
[--1-13-12-011001100]⎢ ⎢11312011001100⎥ ⎥
Этап 2.1.2
Упростим R1R1.
[1-3-2011001100]⎢ ⎢132011001100⎥ ⎥
[1-3-2011001100]⎢ ⎢132011001100⎥ ⎥
Этап 2.2
Выполним операцию над строками R2=R2-R1R2=R2R1, чтобы сделать элемент в 2,12,1 равным 00.
Нажмите для увеличения количества этапов...
Этап 2.2.1
Выполним операцию над строками R2=R2-R1R2=R2R1, чтобы сделать элемент в 2,12,1 равным 00.
[1-3-201-11+30+20-01100]⎢ ⎢1320111+30+2001100⎥ ⎥
Этап 2.2.2
Упростим R2R2.
[1-3-2004201100]⎢ ⎢132004201100⎥ ⎥
[1-3-2004201100]⎢ ⎢132004201100⎥ ⎥
Этап 2.3
Выполним операцию над строками R3=R3-R1R3=R3R1, чтобы сделать элемент в 3,13,1 равным 00.
Нажмите для увеличения количества этапов...
Этап 2.3.1
Выполним операцию над строками R3=R3-R1R3=R3R1, чтобы сделать элемент в 3,13,1 равным 00.
[1-3-2004201-11+30+20-0]⎢ ⎢13200420111+30+200⎥ ⎥
Этап 2.3.2
Упростим R3R3.
[1-3-2004200420]⎢ ⎢132004200420⎥ ⎥
[1-3-2004200420]⎢ ⎢132004200420⎥ ⎥
Этап 2.4
Умножим каждый элемент R2R2 на 1414, чтобы сделать значение в 2,22,2 равным 11.
Нажмите для увеличения количества этапов...
Этап 2.4.1
Умножим каждый элемент R2R2 на 1414, чтобы сделать значение в 2,22,2 равным 11.
[1-3-20044424040420]⎢ ⎢1320044424040420⎥ ⎥
Этап 2.4.2
Упростим R2R2.
[1-3-20011200420]⎢ ⎢1320011200420⎥ ⎥
[1-3-20011200420]⎢ ⎢1320011200420⎥ ⎥
Этап 2.5
Выполним операцию над строками R3=R3-4R2R3=R34R2, чтобы сделать элемент в 3,23,2 равным 00.
Нажмите для увеличения количества этапов...
Этап 2.5.1
Выполним операцию над строками R3=R3-4R2R3=R34R2, чтобы сделать элемент в 3,23,2 равным 00.
[1-3-20011200-404-412-4(12)0-40]⎢ ⎢ ⎢13200112004044124(12)040⎥ ⎥ ⎥
Этап 2.5.2
Упростим R3R3.
[1-3-20011200000]⎢ ⎢1320011200000⎥ ⎥
[1-3-20011200000]⎢ ⎢1320011200000⎥ ⎥
Этап 2.6
Выполним операцию над строками R1=R1+3R2R1=R1+3R2, чтобы сделать элемент в 1,21,2 равным 00.
Нажмите для увеличения количества этапов...
Этап 2.6.1
Выполним операцию над строками R1=R1+3R2R1=R1+3R2, чтобы сделать элемент в 1,21,2 равным 00.
[1+30-3+31-2+3(12)0+30011200000]⎢ ⎢ ⎢1+303+312+3(12)0+30011200000⎥ ⎥ ⎥
Этап 2.6.2
Упростим R1R1.
[10-120011200000]⎢ ⎢ ⎢10120011200000⎥ ⎥ ⎥
[10-120011200000]⎢ ⎢ ⎢10120011200000⎥ ⎥ ⎥
[10-120011200000]⎢ ⎢ ⎢10120011200000⎥ ⎥ ⎥
Этап 3
Используем полученную матрицу для описания окончательного решения системы уравнений.
x-12z=0x12z=0
y+12z=0y+12z=0
0=00=0
Этап 4
Запишем вектор решения, найдя решение через свободные переменные в каждой строке.
[xyz]=[z2-z2z]xyz=⎢ ⎢z2z2z⎥ ⎥
Этап 5
Запишем решение в виде линейной комбинации векторов.
[xyz]=z[12-121]xyz=z⎢ ⎢12121⎥ ⎥
Этап 6
Запишем в виде множества решений.
{z[12-121]|zR}⎪ ⎪⎪ ⎪z⎢ ⎢12121⎥ ⎥∣ ∣ ∣zR⎪ ⎪⎪ ⎪
Этап 7
Решение ― это множество векторов, созданных из свободных переменных системы.
Основание Nul(A)Nul(A): {[12-121]}⎪ ⎪⎪ ⎪⎢ ⎢12121⎥ ⎥⎪ ⎪⎪ ⎪
Размерность Nul(A)Nul(A): 11
Введите СВОЮ задачу
using Amazon.Auth.AccessControlPolicy;
Для Mathway требуются JavaScript и современный браузер.
 [x2  12  π  xdx ]  x2  12  π  xdx  
AmazonPay