Примеры

Этап 1
Разложим на множители, используя теорему о рациональных корнях.
Нажмите для увеличения количества этапов...
Этап 1.1
Если у многочленной функции целые коэффициенты, то каждый рациональный ноль будет иметь вид , где  — делитель константы, а  — делитель старшего коэффициента.
Этап 1.2
Найдем все комбинации . Это ― возможные корни многочлена.
Этап 1.3
Подставим и упростим выражение. В этом случае выражение равно , поэтому является корнем многочлена.
Нажмите для увеличения количества этапов...
Этап 1.3.1
Подставим в многочлен.
Этап 1.3.2
Возведем в степень .
Этап 1.3.3
Возведем в степень .
Этап 1.3.4
Умножим на .
Этап 1.3.5
Вычтем из .
Этап 1.3.6
Умножим на .
Этап 1.3.7
Добавим и .
Этап 1.3.8
Вычтем из .
Этап 1.4
Поскольку  — известный корень, разделим многочлен на , чтобы найти частное многочленов. Этот многочлен можно будет использовать, чтобы найти оставшиеся корни.
Этап 1.5
Разделим на .
Нажмите для увеличения количества этапов...
Этап 1.5.1
Подготовим многочлены к делению. Если слагаемые представляют не все экспоненты, добавим отсутствующий член со значением .
--+-
Этап 1.5.2
Разделим член с максимальной степенью в делимом на член с максимальной степенью в делителе .
--+-
Этап 1.5.3
Умножим новое частное на делитель.
--+-
+-
Этап 1.5.4
Выражение необходимо вычесть из делимого, поэтому изменим все знаки в .
--+-
-+
Этап 1.5.5
После изменения знаков добавим последнее делимое из умноженного многочлена, чтобы найти новое делимое.
--+-
-+
-
Этап 1.5.6
Вынесем следующие члены из исходного делимого в текущее делимое.
--+-
-+
-+
Этап 1.5.7
Разделим член с максимальной степенью в делимом на член с максимальной степенью в делителе .
-
--+-
-+
-+
Этап 1.5.8
Умножим новое частное на делитель.
-
--+-
-+
-+
-+
Этап 1.5.9
Выражение необходимо вычесть из делимого, поэтому изменим все знаки в .
-
--+-
-+
-+
+-
Этап 1.5.10
После изменения знаков добавим последнее делимое из умноженного многочлена, чтобы найти новое делимое.
-
--+-
-+
-+
+-
+
Этап 1.5.11
Вынесем следующие члены из исходного делимого в текущее делимое.
-
--+-
-+
-+
+-
+-
Этап 1.5.12
Разделим член с максимальной степенью в делимом на член с максимальной степенью в делителе .
-+
--+-
-+
-+
+-
+-
Этап 1.5.13
Умножим новое частное на делитель.
-+
--+-
-+
-+
+-
+-
+-
Этап 1.5.14
Выражение необходимо вычесть из делимого, поэтому изменим все знаки в .
-+
--+-
-+
-+
+-
+-
-+
Этап 1.5.15
После изменения знаков добавим последнее делимое из умноженного многочлена, чтобы найти новое делимое.
-+
--+-
-+
-+
+-
+-
-+
Этап 1.5.16
Since the remainder is , the final answer is the quotient.
Этап 1.6
Запишем в виде набора множителей.
Этап 2
Поскольку многочлен можно разложить на множители, он не является простым.
Не является простым
Введите СВОЮ задачу
Для Mathway требуются JavaScript и современный браузер.