Trigonometria Exemplos

Encontre as Funções Trigonométricas Usando as Identidades tan(theta)=-8/15 , cos(theta)<0
,
Etapa 1
A função do cosseno é negativa no segundo e no terceiro quadrantes. A função tangente é negativa no segundo e no quarto quadrantes. O conjunto de soluções para está limitado ao segundo quadrante, pois é o único quadrante encontrado em ambos os conjuntos.
A solução está no segundo quadrante.
Etapa 2
Use a definição de tangente para encontrar os lados conhecidos do triângulo retângulo do círculo unitário. O quadrante determina o sinal em cada valor.
Etapa 3
Encontre a hipotenusa do triângulo de círculo unitário. Como os lados opostos e adjacentes são conhecidos, use o teorema de Pitágoras para encontrar o lado restante.
Etapa 4
Substitua os valores conhecidos na equação.
Etapa 5
Simplifique dentro do radical.
Toque para ver mais passagens...
Etapa 5.1
Eleve à potência de .
Hipotenusa
Etapa 5.2
Eleve à potência de .
Hipotenusa
Etapa 5.3
Some e .
Hipotenusa
Etapa 5.4
Reescreva como .
Hipotenusa
Etapa 5.5
Elimine os termos abaixo do radical, presumindo que sejam números reais positivos.
Hipotenusa
Hipotenusa
Etapa 6
Encontre o valor do seno.
Toque para ver mais passagens...
Etapa 6.1
Use a definição de seno para encontrar o valor de .
Etapa 6.2
Substitua os valores conhecidos.
Etapa 7
Encontre o valor do cosseno.
Toque para ver mais passagens...
Etapa 7.1
Use a definição de cosseno para encontrar o valor de .
Etapa 7.2
Substitua os valores conhecidos.
Etapa 7.3
Mova o número negativo para a frente da fração.
Etapa 8
Encontre o valor da cotangente.
Toque para ver mais passagens...
Etapa 8.1
Use a definição de cotangente para encontrar o valor de .
Etapa 8.2
Substitua os valores conhecidos.
Etapa 8.3
Mova o número negativo para a frente da fração.
Etapa 9
Encontre o valor da secante.
Toque para ver mais passagens...
Etapa 9.1
Use a definição de secante para encontrar o valor de .
Etapa 9.2
Substitua os valores conhecidos.
Etapa 9.3
Mova o número negativo para a frente da fração.
Etapa 10
Encontre o valor da cossecante.
Toque para ver mais passagens...
Etapa 10.1
Use a definição de cossecante para encontrar o valor de .
Etapa 10.2
Substitua os valores conhecidos.
Etapa 11
Esta é a solução para cada valor trigonométrico.