Trigonometria Exemplos

Resolva o Triângulo tri(5)()(13)()(12)(90 graus )
Etapa 1
A lei dos senos se baseia na proporcionalidade dos lados e ângulos em triângulos. A lei afirma que, para os ângulos de um triângulo não retângulo, cada ângulo tem a mesma proporção da medida do ângulo para o valor do seno.
Etapa 2
Substitua os valores conhecidos na lei dos senos para encontrar .
Etapa 3
Resolva a equação para .
Toque para ver mais passagens...
Etapa 3.1
Multiplique os dois lados da equação por .
Etapa 3.2
Simplifique os dois lados da equação.
Toque para ver mais passagens...
Etapa 3.2.1
Simplifique o lado esquerdo.
Toque para ver mais passagens...
Etapa 3.2.1.1
Cancele o fator comum de .
Toque para ver mais passagens...
Etapa 3.2.1.1.1
Cancele o fator comum.
Etapa 3.2.1.1.2
Reescreva a expressão.
Etapa 3.2.2
Simplifique o lado direito.
Toque para ver mais passagens...
Etapa 3.2.2.1
Simplifique .
Toque para ver mais passagens...
Etapa 3.2.2.1.1
O valor exato de é .
Etapa 3.2.2.1.2
Combine e .
Etapa 3.3
Obtenha o seno inverso dos dois lados da equação para extrair de dentro do seno.
Etapa 3.4
Simplifique o lado direito.
Toque para ver mais passagens...
Etapa 3.4.1
Avalie .
Etapa 3.5
A função do seno é positiva no primeiro e no segundo quadrantes. Para encontrar a segunda solução, subtraia o ângulo de referência de para determinar a solução no segundo quadrante.
Etapa 3.6
Subtraia de .
Etapa 3.7
A solução para a equação .
Etapa 3.8
Exclua o ângulo inválido.
Etapa 4
A soma de todos os ângulos em um triângulo é graus.
Etapa 5
Resolva a equação para .
Toque para ver mais passagens...
Etapa 5.1
Some e .
Etapa 5.2
Mova todos os termos que não contêm para o lado direito da equação.
Toque para ver mais passagens...
Etapa 5.2.1
Subtraia dos dois lados da equação.
Etapa 5.2.2
Subtraia de .
Etapa 6
Esses são os resultados de todos os ângulos e lados do triângulo em questão.