Insira um problema...
Trigonometria Exemplos
, ,
Etapa 1
A lei dos senos se baseia na proporcionalidade dos lados e ângulos em triângulos. A lei afirma que, para os ângulos de um triângulo não retângulo, cada ângulo tem a mesma proporção da medida do ângulo para o valor do seno.
Etapa 2
Substitua os valores conhecidos na lei dos senos para encontrar .
Etapa 3
Etapa 3.1
Divida por .
Etapa 3.2
Simplifique .
Etapa 3.2.1
Simplifique o numerador.
Etapa 3.2.1.1
Aplique o ângulo de referência encontrando o ângulo com valores trigonométricos equivalentes no primeiro quadrante.
Etapa 3.2.1.2
O valor exato de é .
Etapa 3.2.2
Multiplique o numerador pelo inverso do denominador.
Etapa 3.2.3
Multiplique .
Etapa 3.2.3.1
Multiplique por .
Etapa 3.2.3.2
Multiplique por .
Etapa 3.3
Obtenha o seno inverso dos dois lados da equação para extrair de dentro do seno.
Etapa 3.4
Simplifique o lado direito.
Etapa 3.4.1
Avalie .
Etapa 3.5
A função do seno é positiva no primeiro e no segundo quadrantes. Para encontrar a segunda solução, subtraia o ângulo de referência de para determinar a solução no segundo quadrante.
Etapa 3.6
Subtraia de .
Etapa 3.7
A solução para a equação .
Etapa 3.8
Exclua o ângulo inválido.
Etapa 4
A soma de todos os ângulos em um triângulo é graus.
Etapa 5
Etapa 5.1
Some e .
Etapa 5.2
Mova todos os termos que não contêm para o lado direito da equação.
Etapa 5.2.1
Subtraia dos dois lados da equação.
Etapa 5.2.2
Subtraia de .
Etapa 6
A lei dos senos se baseia na proporcionalidade dos lados e ângulos em triângulos. A lei afirma que, para os ângulos de um triângulo não retângulo, cada ângulo tem a mesma proporção da medida do ângulo para o valor do seno.
Etapa 7
Substitua os valores conhecidos na lei dos senos para encontrar .
Etapa 8
Etapa 8.1
Fatore cada termo.
Etapa 8.1.1
Avalie .
Etapa 8.1.2
Simplifique o numerador.
Etapa 8.1.2.1
Aplique o ângulo de referência encontrando o ângulo com valores trigonométricos equivalentes no primeiro quadrante.
Etapa 8.1.2.2
O valor exato de é .
Etapa 8.1.3
Multiplique o numerador pelo inverso do denominador.
Etapa 8.1.4
Multiplique .
Etapa 8.1.4.1
Multiplique por .
Etapa 8.1.4.2
Multiplique por .
Etapa 8.2
Encontre o MMC dos termos na equação.
Etapa 8.2.1
Encontrar o MMC de uma lista de valores é o mesmo que encontrar o MMC dos denominadores desses valores.
Etapa 8.2.2
Since contains both numbers and variables, there are two steps to find the LCM. Find LCM for the numeric part then find LCM for the variable part .
Etapa 8.2.3
O MMC é o menor número positivo pelo qual todos os números se dividem uniformemente.
1. Liste os fatores primos de cada número.
2. Multiplique cada fator pelo maior número de vezes em que ele ocorre em cada número.
Etapa 8.2.4
O número não é primo porque tem apenas um fator positivo, que é ele mesmo.
Não é primo
Etapa 8.2.5
tem fatores de e .
Etapa 8.2.6
Multiplique por .
Etapa 8.2.7
O fator de é o próprio .
ocorre vez.
Etapa 8.2.8
O MMC de é o resultado da multiplicação de todos os fatores primos pelo maior número de vezes que eles ocorrem em qualquer um dos termos.
Etapa 8.2.9
O MMC de é a parte numérica multiplicada pela parte variável.
Etapa 8.3
Multiplique cada termo em por para eliminar as frações.
Etapa 8.3.1
Multiplique cada termo em por .
Etapa 8.3.2
Simplifique o lado esquerdo.
Etapa 8.3.2.1
Reescreva usando a propriedade comutativa da multiplicação.
Etapa 8.3.2.2
Multiplique .
Etapa 8.3.2.2.1
Combine e .
Etapa 8.3.2.2.2
Multiplique por .
Etapa 8.3.2.3
Cancele o fator comum de .
Etapa 8.3.2.3.1
Cancele o fator comum.
Etapa 8.3.2.3.2
Reescreva a expressão.
Etapa 8.3.3
Simplifique o lado direito.
Etapa 8.3.3.1
Cancele o fator comum de .
Etapa 8.3.3.1.1
Fatore de .
Etapa 8.3.3.1.2
Cancele o fator comum.
Etapa 8.3.3.1.3
Reescreva a expressão.
Etapa 8.4
Resolva a equação.
Etapa 8.4.1
Reescreva a equação como .
Etapa 8.4.2
Divida cada termo em por e simplifique.
Etapa 8.4.2.1
Divida cada termo em por .
Etapa 8.4.2.2
Simplifique o lado esquerdo.
Etapa 8.4.2.2.1
Cancele o fator comum de .
Etapa 8.4.2.2.1.1
Cancele o fator comum.
Etapa 8.4.2.2.1.2
Divida por .
Etapa 8.4.2.3
Simplifique o lado direito.
Etapa 8.4.2.3.1
Multiplique por .
Etapa 8.4.2.3.2
Combine e simplifique o denominador.
Etapa 8.4.2.3.2.1
Multiplique por .
Etapa 8.4.2.3.2.2
Eleve à potência de .
Etapa 8.4.2.3.2.3
Eleve à potência de .
Etapa 8.4.2.3.2.4
Use a regra da multiplicação de potências para combinar expoentes.
Etapa 8.4.2.3.2.5
Some e .
Etapa 8.4.2.3.2.6
Reescreva como .
Etapa 8.4.2.3.2.6.1
Use para reescrever como .
Etapa 8.4.2.3.2.6.2
Aplique a regra da multiplicação de potências e multiplique os expoentes, .
Etapa 8.4.2.3.2.6.3
Combine e .
Etapa 8.4.2.3.2.6.4
Cancele o fator comum de .
Etapa 8.4.2.3.2.6.4.1
Cancele o fator comum.
Etapa 8.4.2.3.2.6.4.2
Reescreva a expressão.
Etapa 8.4.2.3.2.6.5
Avalie o expoente.
Etapa 8.4.2.3.3
Multiplique por .
Etapa 8.4.2.3.4
Divida por .
Etapa 9
Esses são os resultados de todos os ângulos e lados do triângulo em questão.