Insira um problema...
Trigonometria Exemplos
Etapa 1
Etapa 1.1
Use a propriedade dos logaritmos do produto, .
Etapa 1.2
Expanda usando o método FOIL.
Etapa 1.2.1
Aplique a propriedade distributiva.
Etapa 1.2.2
Aplique a propriedade distributiva.
Etapa 1.2.3
Aplique a propriedade distributiva.
Etapa 1.3
Simplifique e combine termos semelhantes.
Etapa 1.3.1
Simplifique cada termo.
Etapa 1.3.1.1
Reescreva usando a propriedade comutativa da multiplicação.
Etapa 1.3.1.2
Multiplique por somando os expoentes.
Etapa 1.3.1.2.1
Mova .
Etapa 1.3.1.2.2
Multiplique por .
Etapa 1.3.1.3
Multiplique por .
Etapa 1.3.1.4
Multiplique por .
Etapa 1.3.1.5
Multiplique por .
Etapa 1.3.1.6
Multiplique por .
Etapa 1.3.2
Subtraia de .
Etapa 2
Reescreva na forma exponencial usando a definição de um logaritmo. Se e forem números reais positivos e , então, será equivalente a .
Etapa 3
Etapa 3.1
Reescreva a equação como .
Etapa 3.2
Eleve à potência de .
Etapa 3.3
Mova todos os termos para o lado esquerdo da equação e simplifique.
Etapa 3.3.1
Subtraia dos dois lados da equação.
Etapa 3.3.2
Subtraia de .
Etapa 3.4
Use a fórmula quadrática para encontrar as soluções.
Etapa 3.5
Substitua os valores , e na fórmula quadrática e resolva .
Etapa 3.6
Simplifique.
Etapa 3.6.1
Simplifique o numerador.
Etapa 3.6.1.1
Eleve à potência de .
Etapa 3.6.1.2
Multiplique .
Etapa 3.6.1.2.1
Multiplique por .
Etapa 3.6.1.2.2
Multiplique por .
Etapa 3.6.1.3
Some e .
Etapa 3.6.1.4
Reescreva como .
Etapa 3.6.1.4.1
Fatore de .
Etapa 3.6.1.4.2
Reescreva como .
Etapa 3.6.1.5
Elimine os termos abaixo do radical.
Etapa 3.6.2
Multiplique por .
Etapa 3.6.3
Simplifique .
Etapa 3.7
A resposta final é a combinação das duas soluções.
Etapa 4
Exclua as soluções que não tornam verdadeira.
Etapa 5
O resultado pode ser mostrado de várias formas.
Forma exata:
Forma decimal: