Insira um problema...
Trigonometria Exemplos
Etapa 1
Take the specified root of both sides of the equation to eliminate the exponent on the left side.
Etapa 2
Etapa 2.1
Use a regra da multiplicação de potências para distribuir o expoente.
Etapa 2.1.1
Aplique a regra do produto a .
Etapa 2.1.2
Aplique a regra do produto a .
Etapa 2.2
Eleve à potência de .
Etapa 2.3
Multiplique por .
Etapa 2.4
Um elevado a qualquer potência é um.
Etapa 2.5
Eleve à potência de .
Etapa 2.6
Escreva como uma fração com um denominador comum.
Etapa 2.7
Combine os numeradores em relação ao denominador comum.
Etapa 2.8
Some e .
Etapa 2.9
Reescreva como .
Etapa 2.10
Simplifique o denominador.
Etapa 2.10.1
Reescreva como .
Etapa 2.10.2
Elimine os termos abaixo do radical, presumindo que sejam números reais positivos.
Etapa 3
Etapa 3.1
Primeiro, use o valor positivo de para encontrar a primeira solução.
Etapa 3.2
Depois, use o valor negativo de para encontrar a segunda solução.
Etapa 3.3
A solução completa é resultado das partes positiva e negativa da solução.
Etapa 4
Estabeleça cada uma das soluções para resolver .
Etapa 5
Etapa 5.1
Obtenha a cossecante inversa dos dois lados da equação para extrair de dentro da cossecante.
Etapa 5.2
Simplifique o lado direito.
Etapa 5.2.1
Avalie .
Etapa 5.3
A função cossecante é positiva no primeiro e no segundo quadrantes. Para encontrar a segunda solução, subtraia o ângulo de referência de para determinar a solução no segundo quadrante.
Etapa 5.4
Resolva .
Etapa 5.4.1
Remova os parênteses.
Etapa 5.4.2
Remova os parênteses.
Etapa 5.4.3
Subtraia de .
Etapa 5.5
Encontre o período de .
Etapa 5.5.1
O período da função pode ser calculado ao usar .
Etapa 5.5.2
Substitua por na fórmula do período.
Etapa 5.5.3
O valor absoluto é a distância entre um número e zero. A distância entre e é .
Etapa 5.5.4
Divida por .
Etapa 5.6
O período da função é . Portanto, os valores se repetirão a cada radianos nas duas direções.
, para qualquer número inteiro
, para qualquer número inteiro
Etapa 6
Etapa 6.1
Obtenha a cossecante inversa dos dois lados da equação para extrair de dentro da cossecante.
Etapa 6.2
Simplifique o lado direito.
Etapa 6.2.1
Avalie .
Etapa 6.3
The cosecant function is negative in the third and fourth quadrants. To find the second solution, subtract the solution from , to find a reference angle. Next, add this reference angle to to find the solution in the third quadrant.
Etapa 6.4
Simplifique a expressão para encontrar a segunda solução.
Etapa 6.4.1
Subtraia de .
Etapa 6.4.2
O ângulo resultante de é positivo, menor do que e coterminal com .
Etapa 6.5
Encontre o período de .
Etapa 6.5.1
O período da função pode ser calculado ao usar .
Etapa 6.5.2
Substitua por na fórmula do período.
Etapa 6.5.3
O valor absoluto é a distância entre um número e zero. A distância entre e é .
Etapa 6.5.4
Divida por .
Etapa 6.6
Some com todos os ângulos negativos para obter os ângulos positivos.
Etapa 6.6.1
Some com para encontrar o ângulo positivo.
Etapa 6.6.2
Subtraia de .
Etapa 6.6.3
Liste os novos ângulos.
Etapa 6.7
O período da função é . Portanto, os valores se repetirão a cada radianos nas duas direções.
, para qualquer número inteiro
, para qualquer número inteiro
Etapa 7
Liste todas as soluções.
, para qualquer número inteiro
Etapa 8
Etapa 8.1
Consolide e em .
, para qualquer número inteiro
Etapa 8.2
Consolide e em .
, para qualquer número inteiro
, para qualquer número inteiro