Insira um problema...
Trigonometria Exemplos
Etapa 1
Some aos dois lados da equação.
Etapa 2
Etapa 2.1
Divida cada termo em por .
Etapa 2.2
Simplifique o lado esquerdo.
Etapa 2.2.1
Cancele o fator comum de .
Etapa 2.2.1.1
Cancele o fator comum.
Etapa 2.2.1.2
Divida por .
Etapa 2.3
Simplifique o lado direito.
Etapa 2.3.1
Cancele o fator comum de e .
Etapa 2.3.1.1
Fatore de .
Etapa 2.3.1.2
Cancele os fatores comuns.
Etapa 2.3.1.2.1
Fatore de .
Etapa 2.3.1.2.2
Cancele o fator comum.
Etapa 2.3.1.2.3
Reescreva a expressão.
Etapa 3
Take the specified root of both sides of the equation to eliminate the exponent on the left side.
Etapa 4
Etapa 4.1
Reescreva como .
Etapa 4.2
Qualquer raiz de é .
Etapa 4.3
Multiplique por .
Etapa 4.4
Combine e simplifique o denominador.
Etapa 4.4.1
Multiplique por .
Etapa 4.4.2
Eleve à potência de .
Etapa 4.4.3
Eleve à potência de .
Etapa 4.4.4
Use a regra da multiplicação de potências para combinar expoentes.
Etapa 4.4.5
Some e .
Etapa 4.4.6
Reescreva como .
Etapa 4.4.6.1
Use para reescrever como .
Etapa 4.4.6.2
Aplique a regra da multiplicação de potências e multiplique os expoentes, .
Etapa 4.4.6.3
Combine e .
Etapa 4.4.6.4
Cancele o fator comum de .
Etapa 4.4.6.4.1
Cancele o fator comum.
Etapa 4.4.6.4.2
Reescreva a expressão.
Etapa 4.4.6.5
Avalie o expoente.
Etapa 5
Etapa 5.1
Primeiro, use o valor positivo de para encontrar a primeira solução.
Etapa 5.2
Depois, use o valor negativo de para encontrar a segunda solução.
Etapa 5.3
A solução completa é resultado das partes positiva e negativa da solução.
Etapa 6
Estabeleça cada uma das soluções para resolver .
Etapa 7
Etapa 7.1
O intervalo da secante é e . Como não se enquadra nesse intervalo, não há solução.
Nenhuma solução
Nenhuma solução
Etapa 8
Etapa 8.1
O intervalo da secante é e . Como não se enquadra nesse intervalo, não há solução.
Nenhuma solução
Nenhuma solução