Trigonometria Exemplos

Löse nach x auf tan(x)=4tan(x)- raiz quadrada de 3
Etapa 1
Mova todos os termos que contêm para o lado esquerdo da equação.
Toque para ver mais passagens...
Etapa 1.1
Subtraia dos dois lados da equação.
Etapa 1.2
Subtraia de .
Etapa 2
Divida cada termo em por e simplifique.
Toque para ver mais passagens...
Etapa 2.1
Divida cada termo em por .
Etapa 2.2
Simplifique o lado esquerdo.
Toque para ver mais passagens...
Etapa 2.2.1
Cancele o fator comum de .
Toque para ver mais passagens...
Etapa 2.2.1.1
Cancele o fator comum.
Etapa 2.2.1.2
Divida por .
Etapa 2.3
Simplifique o lado direito.
Toque para ver mais passagens...
Etapa 2.3.1
Dividir dois valores negativos resulta em um valor positivo.
Etapa 3
Obtenha a tangente inversa dos dois lados da equação para extrair de dentro da tangente.
Etapa 4
Simplifique o lado direito.
Toque para ver mais passagens...
Etapa 4.1
O valor exato de é .
Etapa 5
A função da tangente é positiva no primeiro e no terceiro quadrantes. Para encontrar a segunda solução, some o ângulo de referência de para determinar a solução no quarto quadrante.
Etapa 6
Simplifique .
Toque para ver mais passagens...
Etapa 6.1
Para escrever como fração com um denominador comum, multiplique por .
Etapa 6.2
Combine frações.
Toque para ver mais passagens...
Etapa 6.2.1
Combine e .
Etapa 6.2.2
Combine os numeradores em relação ao denominador comum.
Etapa 6.3
Simplifique o numerador.
Toque para ver mais passagens...
Etapa 6.3.1
Mova para a esquerda de .
Etapa 6.3.2
Some e .
Etapa 7
Encontre o período de .
Toque para ver mais passagens...
Etapa 7.1
O período da função pode ser calculado ao usar .
Etapa 7.2
Substitua por na fórmula do período.
Etapa 7.3
O valor absoluto é a distância entre um número e zero. A distância entre e é .
Etapa 7.4
Divida por .
Etapa 8
O período da função é . Portanto, os valores se repetirão a cada radianos nas duas direções.
, para qualquer número inteiro
Etapa 9
Consolide as respostas.
, para qualquer número inteiro