Insira um problema...
Trigonometria Exemplos
Etapa 1
Substitua na equação. A fórmula quadrática ficará mais fácil de usar.
Etapa 2
Etapa 2.1
Considere a forma . Encontre um par de números inteiros cujo produto é e cuja soma é . Neste caso, cujo produto é e cuja soma é .
Etapa 2.2
Escreva a forma fatorada usando estes números inteiros.
Etapa 3
Se qualquer fator individual no lado esquerdo da equação for igual a , toda a expressão será igual a .
Etapa 4
Etapa 4.1
Defina como igual a .
Etapa 4.2
Some aos dois lados da equação.
Etapa 5
Etapa 5.1
Defina como igual a .
Etapa 5.2
Some aos dois lados da equação.
Etapa 6
A solução final são todos os valores que tornam verdadeiro.
Etapa 7
Substitua o valor real de de volta na equação resolvida.
Etapa 8
Resolva a primeira equação para .
Etapa 9
Etapa 9.1
Pegue a raiz especificada de ambos os lados da equação para eliminar o expoente no lado esquerdo.
Etapa 9.2
Simplifique .
Etapa 9.2.1
Reescreva como .
Etapa 9.2.2
Elimine os termos abaixo do radical, presumindo que sejam números reais positivos.
Etapa 9.3
A solução completa é resultado das partes positiva e negativa da solução.
Etapa 9.3.1
Primeiro, use o valor positivo de para encontrar a primeira solução.
Etapa 9.3.2
Depois, use o valor negativo de para encontrar a segunda solução.
Etapa 9.3.3
A solução completa é resultado das partes positiva e negativa da solução.
Etapa 10
Resolva a segunda equação para .
Etapa 11
Etapa 11.1
Remova os parênteses.
Etapa 11.2
Pegue a raiz especificada de ambos os lados da equação para eliminar o expoente no lado esquerdo.
Etapa 11.3
Simplifique .
Etapa 11.3.1
Reescreva como .
Etapa 11.3.2
Elimine os termos abaixo do radical, presumindo que sejam números reais positivos.
Etapa 11.4
A solução completa é resultado das partes positiva e negativa da solução.
Etapa 11.4.1
Primeiro, use o valor positivo de para encontrar a primeira solução.
Etapa 11.4.2
Depois, use o valor negativo de para encontrar a segunda solução.
Etapa 11.4.3
A solução completa é resultado das partes positiva e negativa da solução.
Etapa 12
A solução para é .
Etapa 13
Use cada raiz para criar intervalos de teste.
Etapa 14
Etapa 14.1
Teste um valor no intervalo e veja se ele torna a desigualdade verdadeira.
Etapa 14.1.1
Escolha um valor no intervalo e veja se ele torna a desigualdade original verdadeira.
Etapa 14.1.2
Substitua por na desigualdade original.
Etapa 14.1.3
O lado esquerdo não é menor do que o lado direito , o que significa que a afirmação em questão é falsa.
Falso
Falso
Etapa 14.2
Teste um valor no intervalo e veja se ele torna a desigualdade verdadeira.
Etapa 14.2.1
Escolha um valor no intervalo e veja se ele torna a desigualdade original verdadeira.
Etapa 14.2.2
Substitua por na desigualdade original.
Etapa 14.2.3
O lado esquerdo é menor do que o lado direito , o que significa que a afirmação em questão é sempre verdadeira.
Verdadeiro
Verdadeiro
Etapa 14.3
Teste um valor no intervalo e veja se ele torna a desigualdade verdadeira.
Etapa 14.3.1
Escolha um valor no intervalo e veja se ele torna a desigualdade original verdadeira.
Etapa 14.3.2
Substitua por na desigualdade original.
Etapa 14.3.3
O lado esquerdo não é menor do que o lado direito , o que significa que a afirmação em questão é falsa.
Falso
Falso
Etapa 14.4
Teste um valor no intervalo e veja se ele torna a desigualdade verdadeira.
Etapa 14.4.1
Escolha um valor no intervalo e veja se ele torna a desigualdade original verdadeira.
Etapa 14.4.2
Substitua por na desigualdade original.
Etapa 14.4.3
O lado esquerdo é menor do que o lado direito , o que significa que a afirmação em questão é sempre verdadeira.
Verdadeiro
Verdadeiro
Etapa 14.5
Teste um valor no intervalo e veja se ele torna a desigualdade verdadeira.
Etapa 14.5.1
Escolha um valor no intervalo e veja se ele torna a desigualdade original verdadeira.
Etapa 14.5.2
Substitua por na desigualdade original.
Etapa 14.5.3
O lado esquerdo não é menor do que o lado direito , o que significa que a afirmação em questão é falsa.
Falso
Falso
Etapa 14.6
Compare os intervalos para determinar quais satisfazem a desigualdade original.
Falso
Verdadeiro
Falso
Verdadeiro
Falso
Falso
Verdadeiro
Falso
Verdadeiro
Falso
Etapa 15
A solução consiste em todos os intervalos verdadeiros.
ou
Etapa 16
O resultado pode ser mostrado de várias formas.
Fórmula da desigualdade:
Notação de intervalo:
Etapa 17