Trigonometria Exemplos

Löse nach x auf logaritmo de (50x)/(x+2)<2
Etapa 1
Converta a desigualdade em uma igualdade.
Etapa 2
Resolva a equação.
Toque para ver mais passagens...
Etapa 2.1
Reescreva na forma exponencial usando a definição de um logaritmo. Se e forem números reais positivos e , então será equivalente a .
Etapa 2.2
Multiplique usando a regra de três para remover a fração.
Etapa 2.3
Simplifique .
Toque para ver mais passagens...
Etapa 2.3.1
Eleve à potência de .
Etapa 2.3.2
Aplique a propriedade distributiva.
Etapa 2.3.3
Multiplique por .
Etapa 2.4
Mova todos os termos que contêm para o lado esquerdo da equação.
Toque para ver mais passagens...
Etapa 2.4.1
Subtraia dos dois lados da equação.
Etapa 2.4.2
Subtraia de .
Etapa 2.5
Divida cada termo em por e simplifique.
Toque para ver mais passagens...
Etapa 2.5.1
Divida cada termo em por .
Etapa 2.5.2
Simplifique o lado esquerdo.
Toque para ver mais passagens...
Etapa 2.5.2.1
Cancele o fator comum de .
Toque para ver mais passagens...
Etapa 2.5.2.1.1
Cancele o fator comum.
Etapa 2.5.2.1.2
Divida por .
Etapa 2.5.3
Simplifique o lado direito.
Toque para ver mais passagens...
Etapa 2.5.3.1
Divida por .
Etapa 3
Encontre o domínio de .
Toque para ver mais passagens...
Etapa 3.1
Defina o argumento em como maior do que para encontrar onde a expressão está definida.
Etapa 3.2
Resolva .
Toque para ver mais passagens...
Etapa 3.2.1
Encontre todos os valores em que a expressão muda de negativo para positivo, definindo cada fator igual a . Depois, resolva.
Etapa 3.2.2
Divida cada termo em por e simplifique.
Toque para ver mais passagens...
Etapa 3.2.2.1
Divida cada termo em por .
Etapa 3.2.2.2
Simplifique o lado esquerdo.
Toque para ver mais passagens...
Etapa 3.2.2.2.1
Cancele o fator comum de .
Toque para ver mais passagens...
Etapa 3.2.2.2.1.1
Cancele o fator comum.
Etapa 3.2.2.2.1.2
Divida por .
Etapa 3.2.2.3
Simplifique o lado direito.
Toque para ver mais passagens...
Etapa 3.2.2.3.1
Divida por .
Etapa 3.2.3
Subtraia dos dois lados da equação.
Etapa 3.2.4
Resolva cada fator para encontrar os valores em que a expressão de valor absoluto passa de negativa para positiva.
Etapa 3.2.5
Consolide as soluções.
Etapa 3.2.6
Encontre o domínio de .
Toque para ver mais passagens...
Etapa 3.2.6.1
Defina o denominador em como igual a para encontrar onde a expressão está indefinida.
Etapa 3.2.6.2
Subtraia dos dois lados da equação.
Etapa 3.2.6.3
O domínio consiste em todos os valores de que tornam a expressão definida.
Etapa 3.2.7
Use cada raiz para criar intervalos de teste.
Etapa 3.2.8
Escolha um valor de teste de cada intervalo e substitua esse valor pela desigualdade original para determinar quais intervalos satisfazem a desigualdade.
Toque para ver mais passagens...
Etapa 3.2.8.1
Teste um valor no intervalo e veja se ele torna a desigualdade verdadeira.
Toque para ver mais passagens...
Etapa 3.2.8.1.1
Escolha um valor no intervalo e veja se ele torna a desigualdade original verdadeira.
Etapa 3.2.8.1.2
Substitua por na desigualdade original.
Etapa 3.2.8.1.3
O lado esquerdo é maior do que o lado direito , o que significa que a afirmação em questão é sempre verdadeira.
Verdadeiro
Verdadeiro
Etapa 3.2.8.2
Teste um valor no intervalo e veja se ele torna a desigualdade verdadeira.
Toque para ver mais passagens...
Etapa 3.2.8.2.1
Escolha um valor no intervalo e veja se ele torna a desigualdade original verdadeira.
Etapa 3.2.8.2.2
Substitua por na desigualdade original.
Etapa 3.2.8.2.3
O lado esquerdo não é maior do que o lado direito , o que significa que a afirmação em questão é falsa.
Falso
Falso
Etapa 3.2.8.3
Teste um valor no intervalo e veja se ele torna a desigualdade verdadeira.
Toque para ver mais passagens...
Etapa 3.2.8.3.1
Escolha um valor no intervalo e veja se ele torna a desigualdade original verdadeira.
Etapa 3.2.8.3.2
Substitua por na desigualdade original.
Etapa 3.2.8.3.3
O lado esquerdo é maior do que o lado direito , o que significa que a afirmação em questão é sempre verdadeira.
Verdadeiro
Verdadeiro
Etapa 3.2.8.4
Compare os intervalos para determinar quais satisfazem a desigualdade original.
Verdadeiro
Falso
Verdadeiro
Verdadeiro
Falso
Verdadeiro
Etapa 3.2.9
A solução consiste em todos os intervalos verdadeiros.
ou
ou
Etapa 3.3
Defina o denominador em como igual a para encontrar onde a expressão está indefinida.
Etapa 3.4
Subtraia dos dois lados da equação.
Etapa 3.5
O domínio consiste em todos os valores de que tornam a expressão definida.
Etapa 4
Use cada raiz para criar intervalos de teste.
Etapa 5
Escolha um valor de teste de cada intervalo e substitua esse valor pela desigualdade original para determinar quais intervalos satisfazem a desigualdade.
Toque para ver mais passagens...
Etapa 5.1
Teste um valor no intervalo e veja se ele torna a desigualdade verdadeira.
Toque para ver mais passagens...
Etapa 5.1.1
Escolha um valor no intervalo e veja se ele torna a desigualdade original verdadeira.
Etapa 5.1.2
Substitua por na desigualdade original.
Etapa 5.1.3
O lado esquerdo é menor do que o lado direito , o que significa que a afirmação em questão é sempre verdadeira.
Verdadeiro
Verdadeiro
Etapa 5.2
Teste um valor no intervalo e veja se ele torna a desigualdade verdadeira.
Toque para ver mais passagens...
Etapa 5.2.1
Escolha um valor no intervalo e veja se ele torna a desigualdade original verdadeira.
Etapa 5.2.2
Substitua por na desigualdade original.
Etapa 5.2.3
O lado esquerdo não é menor do que o lado direito , o que significa que a afirmação em questão é falsa.
Falso
Falso
Etapa 5.3
Teste um valor no intervalo e veja se ele torna a desigualdade verdadeira.
Toque para ver mais passagens...
Etapa 5.3.1
Escolha um valor no intervalo e veja se ele torna a desigualdade original verdadeira.
Etapa 5.3.2
Substitua por na desigualdade original.
Etapa 5.3.3
Determine se a desigualdade é verdadeira.
Toque para ver mais passagens...
Etapa 5.3.3.1
Não é possível resolver a equação, porque ela é indefinida.
Etapa 5.3.3.2
O lado esquerdo não tem solução, o que significa que a declaração em questão é falsa.
Falso
Falso
Falso
Etapa 5.4
Teste um valor no intervalo e veja se ele torna a desigualdade verdadeira.
Toque para ver mais passagens...
Etapa 5.4.1
Escolha um valor no intervalo e veja se ele torna a desigualdade original verdadeira.
Etapa 5.4.2
Substitua por na desigualdade original.
Etapa 5.4.3
O lado esquerdo é menor do que o lado direito , o que significa que a afirmação em questão é sempre verdadeira.
Verdadeiro
Verdadeiro
Etapa 5.5
Compare os intervalos para determinar quais satisfazem a desigualdade original.
Verdadeiro
Falso
Falso
Verdadeiro
Verdadeiro
Falso
Falso
Verdadeiro
Etapa 6
A solução consiste em todos os intervalos verdadeiros.
ou
Etapa 7
O resultado pode ser mostrado de várias formas.
Fórmula da desigualdade:
Notação de intervalo:
Etapa 8