Insira um problema...
Trigonometria Exemplos
Etapa 1
Multiplique os dois lados por .
Etapa 2
Etapa 2.1
Simplifique o lado esquerdo.
Etapa 2.1.1
Simplifique .
Etapa 2.1.1.1
Aplique a propriedade distributiva.
Etapa 2.1.1.2
Cancele o fator comum de .
Etapa 2.1.1.2.1
Cancele o fator comum.
Etapa 2.1.1.2.2
Reescreva a expressão.
Etapa 2.1.1.3
Reordene e .
Etapa 2.2
Simplifique o lado direito.
Etapa 2.2.1
Cancele o fator comum de .
Etapa 2.2.1.1
Cancele o fator comum.
Etapa 2.2.1.2
Reescreva a expressão.
Etapa 3
Etapa 3.1
Mova todos os termos que não contêm para o lado direito da equação.
Etapa 3.1.1
Subtraia dos dois lados da equação.
Etapa 3.1.2
Subtraia de .
Etapa 3.2
Divida cada termo em por e simplifique.
Etapa 3.2.1
Divida cada termo em por .
Etapa 3.2.2
Simplifique o lado esquerdo.
Etapa 3.2.2.1
Cancele o fator comum de .
Etapa 3.2.2.1.1
Cancele o fator comum.
Etapa 3.2.2.1.2
Divida por .
Etapa 3.2.3
Simplifique o lado direito.
Etapa 3.2.3.1
Divida por .
Etapa 4
Etapa 4.1
Defina o denominador em como igual a para encontrar onde a expressão está indefinida.
Etapa 4.2
O domínio consiste em todos os valores de que tornam a expressão definida.
Etapa 5
Use cada raiz para criar intervalos de teste.
Etapa 6
Etapa 6.1
Teste um valor no intervalo e veja se ele torna a desigualdade verdadeira.
Etapa 6.1.1
Escolha um valor no intervalo e veja se ele torna a desigualdade original verdadeira.
Etapa 6.1.2
Substitua por na desigualdade original.
Etapa 6.1.3
O lado esquerdo é maior do que o lado direito , o que significa que a afirmação em questão é sempre verdadeira.
True
True
Etapa 6.2
Teste um valor no intervalo e veja se ele torna a desigualdade verdadeira.
Etapa 6.2.1
Escolha um valor no intervalo e veja se ele torna a desigualdade original verdadeira.
Etapa 6.2.2
Substitua por na desigualdade original.
Etapa 6.2.3
O lado esquerdo não é maior do que o lado direito , o que significa que a afirmação em questão é falsa.
False
False
Etapa 6.3
Teste um valor no intervalo e veja se ele torna a desigualdade verdadeira.
Etapa 6.3.1
Escolha um valor no intervalo e veja se ele torna a desigualdade original verdadeira.
Etapa 6.3.2
Substitua por na desigualdade original.
Etapa 6.3.3
O lado esquerdo é maior do que o lado direito , o que significa que a afirmação em questão é sempre verdadeira.
True
True
Etapa 6.4
Compare os intervalos para determinar quais satisfazem a desigualdade original.
Verdadeiro
Falso
Verdadeiro
Verdadeiro
Falso
Verdadeiro
Etapa 7
A solução consiste em todos os intervalos verdadeiros.
ou
Etapa 8
O resultado pode ser mostrado de várias formas.
Fórmula da desigualdade:
Notação de intervalo:
Etapa 9