Trigonometria Exemplos

Gráfico 4x^2-24x+4x^2-20y=3
Etapa 1
Resolva .
Toque para ver mais passagens...
Etapa 1.1
Some e .
Etapa 1.2
Mova todos os termos que não contêm para o lado direito da equação.
Toque para ver mais passagens...
Etapa 1.2.1
Subtraia dos dois lados da equação.
Etapa 1.2.2
Some aos dois lados da equação.
Etapa 1.3
Divida cada termo em por e simplifique.
Toque para ver mais passagens...
Etapa 1.3.1
Divida cada termo em por .
Etapa 1.3.2
Simplifique o lado esquerdo.
Toque para ver mais passagens...
Etapa 1.3.2.1
Cancele o fator comum de .
Toque para ver mais passagens...
Etapa 1.3.2.1.1
Cancele o fator comum.
Etapa 1.3.2.1.2
Divida por .
Etapa 1.3.3
Simplifique o lado direito.
Toque para ver mais passagens...
Etapa 1.3.3.1
Simplifique cada termo.
Toque para ver mais passagens...
Etapa 1.3.3.1.1
Mova o número negativo para a frente da fração.
Etapa 1.3.3.1.2
Cancele o fator comum de e .
Toque para ver mais passagens...
Etapa 1.3.3.1.2.1
Fatore de .
Etapa 1.3.3.1.2.2
Cancele os fatores comuns.
Toque para ver mais passagens...
Etapa 1.3.3.1.2.2.1
Fatore de .
Etapa 1.3.3.1.2.2.2
Cancele o fator comum.
Etapa 1.3.3.1.2.2.3
Reescreva a expressão.
Etapa 1.3.3.1.3
Cancele o fator comum de e .
Toque para ver mais passagens...
Etapa 1.3.3.1.3.1
Fatore de .
Etapa 1.3.3.1.3.2
Cancele os fatores comuns.
Toque para ver mais passagens...
Etapa 1.3.3.1.3.2.1
Fatore de .
Etapa 1.3.3.1.3.2.2
Cancele o fator comum.
Etapa 1.3.3.1.3.2.3
Reescreva a expressão.
Etapa 1.3.3.1.4
Mova o número negativo para a frente da fração.
Etapa 2
Encontre as propriedades da parábola em questão.
Toque para ver mais passagens...
Etapa 2.1
Reescreva a equação na forma do vértice.
Toque para ver mais passagens...
Etapa 2.1.1
Mova .
Etapa 2.1.2
Complete o quadrado de .
Toque para ver mais passagens...
Etapa 2.1.2.1
Use a forma para encontrar os valores de , e .
Etapa 2.1.2.2
Considere a forma de vértice de uma parábola.
Etapa 2.1.2.3
Encontre o valor de usando a fórmula .
Toque para ver mais passagens...
Etapa 2.1.2.3.1
Substitua os valores de e na fórmula .
Etapa 2.1.2.3.2
Simplifique o lado direito.
Toque para ver mais passagens...
Etapa 2.1.2.3.2.1
Multiplique o numerador pelo inverso do denominador.
Etapa 2.1.2.3.2.2
Cancele o fator comum de .
Toque para ver mais passagens...
Etapa 2.1.2.3.2.2.1
Mova o negativo de maior ordem em para o numerador.
Etapa 2.1.2.3.2.2.2
Fatore de .
Etapa 2.1.2.3.2.2.3
Cancele o fator comum.
Etapa 2.1.2.3.2.2.4
Reescreva a expressão.
Etapa 2.1.2.3.2.3
Multiplique por .
Etapa 2.1.2.3.2.4
Combine e .
Etapa 2.1.2.3.2.5
Multiplique por .
Etapa 2.1.2.3.2.6
Cancele o fator comum de e .
Toque para ver mais passagens...
Etapa 2.1.2.3.2.6.1
Fatore de .
Etapa 2.1.2.3.2.6.2
Cancele os fatores comuns.
Toque para ver mais passagens...
Etapa 2.1.2.3.2.6.2.1
Fatore de .
Etapa 2.1.2.3.2.6.2.2
Cancele o fator comum.
Etapa 2.1.2.3.2.6.2.3
Reescreva a expressão.
Etapa 2.1.2.3.2.6.2.4
Divida por .
Etapa 2.1.2.3.2.7
Mova o número negativo para a frente da fração.
Etapa 2.1.2.4
Encontre o valor de usando a fórmula .
Toque para ver mais passagens...
Etapa 2.1.2.4.1
Substitua os valores de , e na fórmula .
Etapa 2.1.2.4.2
Simplifique o lado direito.
Toque para ver mais passagens...
Etapa 2.1.2.4.2.1
Simplifique cada termo.
Toque para ver mais passagens...
Etapa 2.1.2.4.2.1.1
Simplifique o numerador.
Toque para ver mais passagens...
Etapa 2.1.2.4.2.1.1.1
Aplique a regra do produto a .
Etapa 2.1.2.4.2.1.1.2
Eleve à potência de .
Etapa 2.1.2.4.2.1.1.3
Aplique a regra do produto a .
Etapa 2.1.2.4.2.1.1.4
Eleve à potência de .
Etapa 2.1.2.4.2.1.1.5
Eleve à potência de .
Etapa 2.1.2.4.2.1.1.6
Multiplique por .
Etapa 2.1.2.4.2.1.2
Combine e .
Etapa 2.1.2.4.2.1.3
Multiplique por .
Etapa 2.1.2.4.2.1.4
Multiplique o numerador pelo inverso do denominador.
Etapa 2.1.2.4.2.1.5
Cancele o fator comum de .
Toque para ver mais passagens...
Etapa 2.1.2.4.2.1.5.1
Fatore de .
Etapa 2.1.2.4.2.1.5.2
Fatore de .
Etapa 2.1.2.4.2.1.5.3
Cancele o fator comum.
Etapa 2.1.2.4.2.1.5.4
Reescreva a expressão.
Etapa 2.1.2.4.2.1.6
Cancele o fator comum de .
Toque para ver mais passagens...
Etapa 2.1.2.4.2.1.6.1
Fatore de .
Etapa 2.1.2.4.2.1.6.2
Cancele o fator comum.
Etapa 2.1.2.4.2.1.6.3
Reescreva a expressão.
Etapa 2.1.2.4.2.1.7
Multiplique por .
Etapa 2.1.2.4.2.1.8
Multiplique por .
Etapa 2.1.2.4.2.2
Para escrever como fração com um denominador comum, multiplique por .
Etapa 2.1.2.4.2.3
Escreva cada expressão com um denominador comum de , multiplicando cada um por um fator apropriado de .
Toque para ver mais passagens...
Etapa 2.1.2.4.2.3.1
Multiplique por .
Etapa 2.1.2.4.2.3.2
Multiplique por .
Etapa 2.1.2.4.2.4
Combine os numeradores em relação ao denominador comum.
Etapa 2.1.2.4.2.5
Simplifique o numerador.
Toque para ver mais passagens...
Etapa 2.1.2.4.2.5.1
Multiplique por .
Etapa 2.1.2.4.2.5.2
Subtraia de .
Etapa 2.1.2.4.2.6
Mova o número negativo para a frente da fração.
Etapa 2.1.2.5
Substitua os valores de , e na forma do vértice .
Etapa 2.1.3
Defina como igual ao novo lado direito.
Etapa 2.2
Use a forma de vértice, , para determinar os valores de , e .
Etapa 2.3
Como o valor de é positivo, a parábola abre para cima.
Abre para cima
Etapa 2.4
Encontre o vértice .
Etapa 2.5
Encontre , a distância do vértice até o foco.
Toque para ver mais passagens...
Etapa 2.5.1
Encontre a distância do vértice até um foco da parábola usando a seguinte fórmula.
Etapa 2.5.2
Substitua o valor de na fórmula.
Etapa 2.5.3
Simplifique.
Toque para ver mais passagens...
Etapa 2.5.3.1
Combine e .
Etapa 2.5.3.2
Multiplique por .
Etapa 2.5.3.3
Multiplique o numerador pelo inverso do denominador.
Etapa 2.5.3.4
Multiplique por .
Etapa 2.6
Encontre o foco.
Toque para ver mais passagens...
Etapa 2.6.1
O foco de uma parábola pode ser encontrado ao somar com a coordenada y , se a parábola abrir para cima ou para baixo.
Etapa 2.6.2
Substitua os valores conhecidos de , e na fórmula e simplifique.
Etapa 2.7
Para encontrar o eixo de simetria, encontre a reta que passa pelo vértice e o foco.
Etapa 2.8
Encontre a diretriz.
Toque para ver mais passagens...
Etapa 2.8.1
A diretriz de uma parábola é a reta horizontal encontrada ao subtrair da coordenada y do vértice se a parábola abrir para cima ou para baixo.
Etapa 2.8.2
Substitua os valores conhecidos de e na fórmula e simplifique.
Etapa 2.9
Use as propriedades da parábola para analisá-la e representá-la graficamente.
Direção: abre para cima
Vértice:
Foco:
Eixo de simetria:
Diretriz:
Direção: abre para cima
Vértice:
Foco:
Eixo de simetria:
Diretriz:
Etapa 3
Selecione alguns valores de e substitua-os na equação para encontrar os valores correspondentes de . Os valores de devem ser selecionados em torno do vértice.
Toque para ver mais passagens...
Etapa 3.1
Substitua a variável por na expressão.
Etapa 3.2
Simplifique o resultado.
Toque para ver mais passagens...
Etapa 3.2.1
Combine os numeradores em relação ao denominador comum.
Etapa 3.2.2
Simplifique cada termo.
Toque para ver mais passagens...
Etapa 3.2.2.1
Um elevado a qualquer potência é um.
Etapa 3.2.2.2
Multiplique por .
Etapa 3.2.2.3
Multiplique por .
Etapa 3.2.3
Subtraia de .
Etapa 3.2.4
Simplifique cada termo.
Toque para ver mais passagens...
Etapa 3.2.4.1
Mova o número negativo para a frente da fração.
Etapa 3.2.4.2
Mova o número negativo para a frente da fração.
Etapa 3.2.5
Para escrever como fração com um denominador comum, multiplique por .
Etapa 3.2.6
Escreva cada expressão com um denominador comum de , multiplicando cada um por um fator apropriado de .
Toque para ver mais passagens...
Etapa 3.2.6.1
Multiplique por .
Etapa 3.2.6.2
Multiplique por .
Etapa 3.2.7
Combine os numeradores em relação ao denominador comum.
Etapa 3.2.8
Simplifique o numerador.
Toque para ver mais passagens...
Etapa 3.2.8.1
Multiplique por .
Etapa 3.2.8.2
Subtraia de .
Etapa 3.2.9
Mova o número negativo para a frente da fração.
Etapa 3.2.10
A resposta final é .
Etapa 3.3
O valor em é .
Etapa 3.4
Substitua a variável por na expressão.
Etapa 3.5
Simplifique o resultado.
Toque para ver mais passagens...
Etapa 3.5.1
Combine os numeradores em relação ao denominador comum.
Etapa 3.5.2
Simplifique cada termo.
Toque para ver mais passagens...
Etapa 3.5.2.1
Elevar a qualquer potência positiva produz .
Etapa 3.5.2.2
Multiplique por .
Etapa 3.5.2.3
Multiplique por .
Etapa 3.5.3
Some e .
Etapa 3.5.4
Simplifique cada termo.
Toque para ver mais passagens...
Etapa 3.5.4.1
Divida por .
Etapa 3.5.4.2
Mova o número negativo para a frente da fração.
Etapa 3.5.5
Subtraia de .
Etapa 3.5.6
A resposta final é .
Etapa 3.6
O valor em é .
Etapa 3.7
Substitua a variável por na expressão.
Etapa 3.8
Simplifique o resultado.
Toque para ver mais passagens...
Etapa 3.8.1
Combine os numeradores em relação ao denominador comum.
Etapa 3.8.2
Simplifique cada termo.
Toque para ver mais passagens...
Etapa 3.8.2.1
Eleve à potência de .
Etapa 3.8.2.2
Multiplique por .
Etapa 3.8.2.3
Multiplique por .
Etapa 3.8.3
Subtraia de .
Etapa 3.8.4
Simplifique cada termo.
Toque para ver mais passagens...
Etapa 3.8.4.1
Divida por .
Etapa 3.8.4.2
Mova o número negativo para a frente da fração.
Etapa 3.8.5
Subtraia de .
Etapa 3.8.6
A resposta final é .
Etapa 3.9
O valor em é .
Etapa 3.10
Substitua a variável por na expressão.
Etapa 3.11
Simplifique o resultado.
Toque para ver mais passagens...
Etapa 3.11.1
Combine os numeradores em relação ao denominador comum.
Etapa 3.11.2
Simplifique cada termo.
Toque para ver mais passagens...
Etapa 3.11.2.1
Eleve à potência de .
Etapa 3.11.2.2
Multiplique por .
Etapa 3.11.2.3
Multiplique por .
Etapa 3.11.3
Simplifique a expressão.
Toque para ver mais passagens...
Etapa 3.11.3.1
Subtraia de .
Etapa 3.11.3.2
Mova o número negativo para a frente da fração.
Etapa 3.11.4
Para escrever como fração com um denominador comum, multiplique por .
Etapa 3.11.5
Escreva cada expressão com um denominador comum de , multiplicando cada um por um fator apropriado de .
Toque para ver mais passagens...
Etapa 3.11.5.1
Multiplique por .
Etapa 3.11.5.2
Multiplique por .
Etapa 3.11.6
Combine os numeradores em relação ao denominador comum.
Etapa 3.11.7
Simplifique o numerador.
Toque para ver mais passagens...
Etapa 3.11.7.1
Multiplique por .
Etapa 3.11.7.2
Subtraia de .
Etapa 3.11.8
A resposta final é .
Etapa 3.12
O valor em é .
Etapa 3.13
Crie um gráfico da parábola usando suas propriedades e os pontos selecionados.
Etapa 4
Crie um gráfico da parábola usando suas propriedades e os pontos selecionados.
Direção: abre para cima
Vértice:
Foco:
Eixo de simetria:
Diretriz:
Etapa 5