Trigonometria Exemplos

Gráfico f(x) = square root of x-1-2
Etapa 1
Encontre o domínio para de modo que uma lista de valores possa ser escolhida para encontrar uma lista de pontos, o que ajudará a representar graficamente o radical.
Toque para ver mais passagens...
Etapa 1.1
Defina o radicando em como maior do que ou igual a para encontrar onde a expressão está definida.
Etapa 1.2
Some aos dois lados da desigualdade.
Etapa 1.3
O domínio consiste em todos os valores de que tornam a expressão definida.
Notação de intervalo:
Notação de construtor de conjuntos:
Notação de intervalo:
Notação de construtor de conjuntos:
Etapa 2
Para encontrar o ponto final da expressão com radicais, substitua o valor , que é o menor valor no domínio, em .
Toque para ver mais passagens...
Etapa 2.1
Substitua a variável por na expressão.
Etapa 2.2
Simplifique o resultado.
Toque para ver mais passagens...
Etapa 2.2.1
Subtraia de .
Etapa 2.2.2
Reescreva como .
Etapa 2.2.3
Elimine os termos abaixo do radical, presumindo que sejam números reais positivos.
Etapa 2.2.4
A resposta final é .
Etapa 3
O ponto final da expressão com radicais é .
Etapa 4
Selecione alguns valores de a partir do domínio. É mais útil selecionar os valores de forma que fiquem próximos do valor do ponto final da expressão com radicais.
Toque para ver mais passagens...
Etapa 4.1
Substitua o valor em . Nesse caso, o ponto é .
Toque para ver mais passagens...
Etapa 4.1.1
Substitua a variável por na expressão.
Etapa 4.1.2
Simplifique o resultado.
Toque para ver mais passagens...
Etapa 4.1.2.1
Subtraia de .
Etapa 4.1.2.2
Qualquer raiz de é .
Etapa 4.1.2.3
A resposta final é .
Etapa 4.2
Substitua o valor em . Nesse caso, o ponto é .
Toque para ver mais passagens...
Etapa 4.2.1
Substitua a variável por na expressão.
Etapa 4.2.2
Simplifique o resultado.
Toque para ver mais passagens...
Etapa 4.2.2.1
Subtraia de .
Etapa 4.2.2.2
A resposta final é .
Etapa 4.3
A raiz quadrada pode ser representada graficamente usando os pontos ao redor do vértice
Etapa 5