Trigonometria Exemplos

Löse nach ? auf cos(2x)=3sin(x)
Etapa 1
Use a fórmula do arco duplo para transformar em .
Etapa 2
Subtraia dos dois lados da equação.
Etapa 3
Subtraia dos dois lados da equação.
Etapa 4
Resolva a equação para .
Toque para ver mais passagens...
Etapa 4.1
Substitua por .
Etapa 4.2
Some aos dois lados da equação.
Etapa 4.3
Use a fórmula quadrática para encontrar as soluções.
Etapa 4.4
Substitua os valores , e na fórmula quadrática e resolva .
Etapa 4.5
Simplifique.
Toque para ver mais passagens...
Etapa 4.5.1
Simplifique o numerador.
Toque para ver mais passagens...
Etapa 4.5.1.1
Eleve à potência de .
Etapa 4.5.1.2
Multiplique .
Toque para ver mais passagens...
Etapa 4.5.1.2.1
Multiplique por .
Etapa 4.5.1.2.2
Multiplique por .
Etapa 4.5.1.3
Some e .
Etapa 4.5.2
Multiplique por .
Etapa 4.5.3
Mova o número negativo para a frente da fração.
Etapa 4.6
A resposta final é a combinação das duas soluções.
Etapa 4.7
Substitua por .
Etapa 4.8
Estabeleça cada uma das soluções para resolver .
Etapa 4.9
Resolva em .
Toque para ver mais passagens...
Etapa 4.9.1
O intervalo do seno é . Como não se enquadra nesse intervalo, não há solução.
Nenhuma solução
Nenhuma solução
Etapa 4.10
Resolva em .
Toque para ver mais passagens...
Etapa 4.10.1
Obtenha o seno inverso dos dois lados da equação para extrair de dentro do seno.
Etapa 4.10.2
Simplifique o lado direito.
Toque para ver mais passagens...
Etapa 4.10.2.1
Avalie .
Etapa 4.10.3
A função do seno é negativa no terceiro e no quarto quadrantes. Para encontrar a segunda solução, subtraia a solução de para determinar um ângulo de referência. Depois, some esse ângulo de referência com para encontrar a solução no terceiro quadrante.
Etapa 4.10.4
Simplifique a expressão para encontrar a segunda solução.
Toque para ver mais passagens...
Etapa 4.10.4.1
Subtraia de .
Etapa 4.10.4.2
O ângulo resultante de é positivo, menor do que e coterminal com .
Etapa 4.10.5
Encontre o período de .
Toque para ver mais passagens...
Etapa 4.10.5.1
O período da função pode ser calculado ao usar .
Etapa 4.10.5.2
Substitua por na fórmula do período.
Etapa 4.10.5.3
O valor absoluto é a distância entre um número e zero. A distância entre e é .
Etapa 4.10.5.4
Divida por .
Etapa 4.10.6
O período da função é . Portanto, os valores se repetirão a cada radianos nas duas direções.
, para qualquer número inteiro
, para qualquer número inteiro
Etapa 4.11
Liste todas as soluções.
, para qualquer número inteiro
, para qualquer número inteiro