Trigonometria Exemplos

Löse nach ? auf sin(x)^2=cos(x)^2-1
Etapa 1
Substitua por com base na identidade .
Etapa 2
Reordene o polinômio.
Etapa 3
Mova todos os termos que contêm para o lado esquerdo da equação.
Toque para ver mais passagens...
Etapa 3.1
Subtraia dos dois lados da equação.
Etapa 3.2
Subtraia de .
Etapa 4
Mova todos os termos que não contêm para o lado direito da equação.
Toque para ver mais passagens...
Etapa 4.1
Subtraia dos dois lados da equação.
Etapa 4.2
Subtraia de .
Etapa 5
Divida cada termo em por e simplifique.
Toque para ver mais passagens...
Etapa 5.1
Divida cada termo em por .
Etapa 5.2
Simplifique o lado esquerdo.
Toque para ver mais passagens...
Etapa 5.2.1
Cancele o fator comum de .
Toque para ver mais passagens...
Etapa 5.2.1.1
Cancele o fator comum.
Etapa 5.2.1.2
Divida por .
Etapa 5.3
Simplifique o lado direito.
Toque para ver mais passagens...
Etapa 5.3.1
Divida por .
Etapa 6
Take the specified root of both sides of the equation to eliminate the exponent on the left side.
Etapa 7
Qualquer raiz de é .
Etapa 8
A solução completa é resultado das partes positiva e negativa da solução.
Toque para ver mais passagens...
Etapa 8.1
Primeiro, use o valor positivo de para encontrar a primeira solução.
Etapa 8.2
Depois, use o valor negativo de para encontrar a segunda solução.
Etapa 8.3
A solução completa é resultado das partes positiva e negativa da solução.
Etapa 9
Estabeleça cada uma das soluções para resolver .
Etapa 10
Resolva em .
Toque para ver mais passagens...
Etapa 10.1
Obtenha o cosseno inverso dos dois lados da equação para extrair de dentro do cosseno.
Etapa 10.2
Simplifique o lado direito.
Toque para ver mais passagens...
Etapa 10.2.1
O valor exato de é .
Etapa 10.3
A função do cosseno é positiva no primeiro e no quarto quadrantes. Para encontrar a segunda solução, subtraia o ângulo de referência de para determinar a solução no quarto quadrante.
Etapa 10.4
Subtraia de .
Etapa 10.5
Encontre o período de .
Toque para ver mais passagens...
Etapa 10.5.1
O período da função pode ser calculado ao usar .
Etapa 10.5.2
Substitua por na fórmula do período.
Etapa 10.5.3
O valor absoluto é a distância entre um número e zero. A distância entre e é .
Etapa 10.5.4
Divida por .
Etapa 10.6
O período da função é . Portanto, os valores se repetirão a cada radianos nas duas direções.
, para qualquer número inteiro
, para qualquer número inteiro
Etapa 11
Resolva em .
Toque para ver mais passagens...
Etapa 11.1
Obtenha o cosseno inverso dos dois lados da equação para extrair de dentro do cosseno.
Etapa 11.2
Simplifique o lado direito.
Toque para ver mais passagens...
Etapa 11.2.1
O valor exato de é .
Etapa 11.3
A função do cosseno é negativa no segundo e no terceiro quadrantes. Para encontrar a segunda solução, subtraia o ângulo de referência de para determinar a solução no terceiro quadrante.
Etapa 11.4
Subtraia de .
Etapa 11.5
Encontre o período de .
Toque para ver mais passagens...
Etapa 11.5.1
O período da função pode ser calculado ao usar .
Etapa 11.5.2
Substitua por na fórmula do período.
Etapa 11.5.3
O valor absoluto é a distância entre um número e zero. A distância entre e é .
Etapa 11.5.4
Divida por .
Etapa 11.6
O período da função é . Portanto, os valores se repetirão a cada radianos nas duas direções.
, para qualquer número inteiro
, para qualquer número inteiro
Etapa 12
Liste todas as soluções.
, para qualquer número inteiro
Etapa 13
Consolide as respostas.
, para qualquer número inteiro