Trigonometria Exemplos

Löse nach ? auf 1-tan(x)^2=sec(x)^2
Etapa 1
Substitua por com base na identidade .
Etapa 2
Simplifique cada termo.
Toque para ver mais passagens...
Etapa 2.1
Aplique a propriedade distributiva.
Etapa 2.2
Multiplique por .
Etapa 3
Some e .
Etapa 4
Mova todos os termos que contêm para o lado esquerdo da equação.
Toque para ver mais passagens...
Etapa 4.1
Subtraia dos dois lados da equação.
Etapa 4.2
Subtraia de .
Etapa 5
Subtraia dos dois lados da equação.
Etapa 6
Divida cada termo em por e simplifique.
Toque para ver mais passagens...
Etapa 6.1
Divida cada termo em por .
Etapa 6.2
Simplifique o lado esquerdo.
Toque para ver mais passagens...
Etapa 6.2.1
Cancele o fator comum de .
Toque para ver mais passagens...
Etapa 6.2.1.1
Cancele o fator comum.
Etapa 6.2.1.2
Divida por .
Etapa 6.3
Simplifique o lado direito.
Toque para ver mais passagens...
Etapa 6.3.1
Divida por .
Etapa 7
Take the specified root of both sides of the equation to eliminate the exponent on the left side.
Etapa 8
Qualquer raiz de é .
Etapa 9
A solução completa é resultado das partes positiva e negativa da solução.
Toque para ver mais passagens...
Etapa 9.1
Primeiro, use o valor positivo de para encontrar a primeira solução.
Etapa 9.2
Depois, use o valor negativo de para encontrar a segunda solução.
Etapa 9.3
A solução completa é resultado das partes positiva e negativa da solução.
Etapa 10
Estabeleça cada uma das soluções para resolver .
Etapa 11
Resolva em .
Toque para ver mais passagens...
Etapa 11.1
Obtenha a secante inversa dos dois lados da equação para extrair de dentro da secante.
Etapa 11.2
Simplifique o lado direito.
Toque para ver mais passagens...
Etapa 11.2.1
O valor exato de é .
Etapa 11.3
A função secante é positiva no primeiro e no quarto quadrantes. Para encontrar a segunda solução, subtraia o ângulo de referência de para determinar a solução no quarto quadrante.
Etapa 11.4
Subtraia de .
Etapa 11.5
Encontre o período de .
Toque para ver mais passagens...
Etapa 11.5.1
O período da função pode ser calculado ao usar .
Etapa 11.5.2
Substitua por na fórmula do período.
Etapa 11.5.3
O valor absoluto é a distância entre um número e zero. A distância entre e é .
Etapa 11.5.4
Divida por .
Etapa 11.6
O período da função é . Portanto, os valores se repetirão a cada radianos nas duas direções.
, para qualquer número inteiro
, para qualquer número inteiro
Etapa 12
Resolva em .
Toque para ver mais passagens...
Etapa 12.1
Obtenha a secante inversa dos dois lados da equação para extrair de dentro da secante.
Etapa 12.2
Simplifique o lado direito.
Toque para ver mais passagens...
Etapa 12.2.1
O valor exato de é .
Etapa 12.3
A função secante é negativa no segundo e no terceiro quadrantes. Para encontrar a segunda solução, subtraia o ângulo de referência de para determinar a solução no terceiro quadrante.
Etapa 12.4
Subtraia de .
Etapa 12.5
Encontre o período de .
Toque para ver mais passagens...
Etapa 12.5.1
O período da função pode ser calculado ao usar .
Etapa 12.5.2
Substitua por na fórmula do período.
Etapa 12.5.3
O valor absoluto é a distância entre um número e zero. A distância entre e é .
Etapa 12.5.4
Divida por .
Etapa 12.6
O período da função é . Portanto, os valores se repetirão a cada radianos nas duas direções.
, para qualquer número inteiro
, para qualquer número inteiro
Etapa 13
Liste todas as soluções.
, para qualquer número inteiro
Etapa 14
Consolide as respostas.
, para qualquer número inteiro