Insira um problema...
Trigonometria Exemplos
Etapa 1
Reescreva a equação como .
Etapa 2
Etapa 2.1
Subtraia dos dois lados da equação.
Etapa 2.2
Subtraia de .
Etapa 3
Etapa 3.1
Divida cada termo em por .
Etapa 3.2
Simplifique o lado esquerdo.
Etapa 3.2.1
Cancele o fator comum de .
Etapa 3.2.1.1
Cancele o fator comum.
Etapa 3.2.1.2
Divida por .
Etapa 3.3
Simplifique o lado direito.
Etapa 3.3.1
Divida por .
Etapa 4
Obtenha o seno inverso dos dois lados da equação para extrair de dentro do seno.
Etapa 5
Etapa 5.1
O valor exato de é .
Etapa 6
Etapa 6.1
Subtraia dos dois lados da equação.
Etapa 6.2
Subtraia de .
Etapa 7
Etapa 7.1
Divida cada termo em por .
Etapa 7.2
Simplifique o lado esquerdo.
Etapa 7.2.1
Cancele o fator comum de .
Etapa 7.2.1.1
Cancele o fator comum.
Etapa 7.2.1.2
Divida por .
Etapa 7.3
Simplifique o lado direito.
Etapa 7.3.1
Divida por .
Etapa 8
A função do seno é positiva no primeiro e no segundo quadrantes. Para encontrar a segunda solução, subtraia o ângulo de referência de para determinar a solução no segundo quadrante.
Etapa 9
Etapa 9.1
Simplifique .
Etapa 9.1.1
Para escrever como fração com um denominador comum, multiplique por .
Etapa 9.1.2
Combine frações.
Etapa 9.1.2.1
Combine e .
Etapa 9.1.2.2
Combine os numeradores em relação ao denominador comum.
Etapa 9.1.3
Simplifique o numerador.
Etapa 9.1.3.1
Mova para a esquerda de .
Etapa 9.1.3.2
Subtraia de .
Etapa 9.2
Mova todos os termos que não contêm para o lado direito da equação.
Etapa 9.2.1
Subtraia dos dois lados da equação.
Etapa 9.2.2
Subtraia de .
Etapa 9.3
Divida cada termo em por e simplifique.
Etapa 9.3.1
Divida cada termo em por .
Etapa 9.3.2
Simplifique o lado esquerdo.
Etapa 9.3.2.1
Cancele o fator comum de .
Etapa 9.3.2.1.1
Cancele o fator comum.
Etapa 9.3.2.1.2
Divida por .
Etapa 9.3.3
Simplifique o lado direito.
Etapa 9.3.3.1
Divida por .
Etapa 10
Etapa 10.1
O período da função pode ser calculado ao usar .
Etapa 10.2
Substitua por na fórmula do período.
Etapa 10.3
O valor absoluto é a distância entre um número e zero. A distância entre e é .
Etapa 10.4
Substitua por uma aproximação.
Etapa 10.5
Multiplique por .
Etapa 10.6
Divida por .
Etapa 11
Etapa 11.1
Some com para encontrar o ângulo positivo.
Etapa 11.2
Subtraia de .
Etapa 11.3
Liste os novos ângulos.
Etapa 12
O período da função é . Portanto, os valores se repetirão a cada radianos nas duas direções.
, para qualquer número inteiro