Insira um problema...
Trigonometria Exemplos
Etapa 1
Substitua por com base na identidade .
Etapa 2
Subtraia de .
Etapa 3
Reordene o polinômio.
Etapa 4
Subtraia dos dois lados da equação.
Etapa 5
Etapa 5.1
Divida cada termo em por .
Etapa 5.2
Simplifique o lado esquerdo.
Etapa 5.2.1
Cancele o fator comum de .
Etapa 5.2.1.1
Cancele o fator comum.
Etapa 5.2.1.2
Divida por .
Etapa 5.3
Simplifique o lado direito.
Etapa 5.3.1
Dividir dois valores negativos resulta em um valor positivo.
Etapa 6
Take the specified root of both sides of the equation to eliminate the exponent on the left side.
Etapa 7
Etapa 7.1
Reescreva como .
Etapa 7.2
Qualquer raiz de é .
Etapa 7.3
Simplifique o denominador.
Etapa 7.3.1
Reescreva como .
Etapa 7.3.2
Elimine os termos abaixo do radical, presumindo que sejam números reais positivos.
Etapa 8
Etapa 8.1
Primeiro, use o valor positivo de para encontrar a primeira solução.
Etapa 8.2
Depois, use o valor negativo de para encontrar a segunda solução.
Etapa 8.3
A solução completa é resultado das partes positiva e negativa da solução.
Etapa 9
Estabeleça cada uma das soluções para resolver .
Etapa 10
Etapa 10.1
Obtenha o seno inverso dos dois lados da equação para extrair de dentro do seno.
Etapa 10.2
Simplifique o lado direito.
Etapa 10.2.1
O valor exato de é .
Etapa 10.3
A função do seno é positiva no primeiro e no segundo quadrantes. Para encontrar a segunda solução, subtraia o ângulo de referência de para determinar a solução no segundo quadrante.
Etapa 10.4
Simplifique .
Etapa 10.4.1
Para escrever como fração com um denominador comum, multiplique por .
Etapa 10.4.2
Combine frações.
Etapa 10.4.2.1
Combine e .
Etapa 10.4.2.2
Combine os numeradores em relação ao denominador comum.
Etapa 10.4.3
Simplifique o numerador.
Etapa 10.4.3.1
Mova para a esquerda de .
Etapa 10.4.3.2
Subtraia de .
Etapa 10.5
Encontre o período de .
Etapa 10.5.1
O período da função pode ser calculado ao usar .
Etapa 10.5.2
Substitua por na fórmula do período.
Etapa 10.5.3
O valor absoluto é a distância entre um número e zero. A distância entre e é .
Etapa 10.5.4
Divida por .
Etapa 10.6
O período da função é . Portanto, os valores se repetirão a cada radianos nas duas direções.
, para qualquer número inteiro
, para qualquer número inteiro
Etapa 11
Etapa 11.1
Obtenha o seno inverso dos dois lados da equação para extrair de dentro do seno.
Etapa 11.2
Simplifique o lado direito.
Etapa 11.2.1
O valor exato de é .
Etapa 11.3
A função do seno é negativa no terceiro e no quarto quadrantes. Para encontrar a segunda solução, subtraia a solução de para determinar um ângulo de referência. Depois, some esse ângulo de referência com para encontrar a solução no terceiro quadrante.
Etapa 11.4
Simplifique a expressão para encontrar a segunda solução.
Etapa 11.4.1
Subtraia de .
Etapa 11.4.2
O ângulo resultante de é positivo, menor do que e coterminal com .
Etapa 11.5
Encontre o período de .
Etapa 11.5.1
O período da função pode ser calculado ao usar .
Etapa 11.5.2
Substitua por na fórmula do período.
Etapa 11.5.3
O valor absoluto é a distância entre um número e zero. A distância entre e é .
Etapa 11.5.4
Divida por .
Etapa 11.6
Some com todos os ângulos negativos para obter os ângulos positivos.
Etapa 11.6.1
Some com para encontrar o ângulo positivo.
Etapa 11.6.2
Para escrever como fração com um denominador comum, multiplique por .
Etapa 11.6.3
Combine frações.
Etapa 11.6.3.1
Combine e .
Etapa 11.6.3.2
Combine os numeradores em relação ao denominador comum.
Etapa 11.6.4
Simplifique o numerador.
Etapa 11.6.4.1
Multiplique por .
Etapa 11.6.4.2
Subtraia de .
Etapa 11.6.5
Liste os novos ângulos.
Etapa 11.7
O período da função é . Portanto, os valores se repetirão a cada radianos nas duas direções.
, para qualquer número inteiro
, para qualquer número inteiro
Etapa 12
Liste todas as soluções.
, para qualquer número inteiro
Etapa 13
Etapa 13.1
Consolide e em .
, para qualquer número inteiro
Etapa 13.2
Consolide e em .
, para qualquer número inteiro
, para qualquer número inteiro