Trigonometria Exemplos

Löse nach x auf cos(x)^2=0.24
Etapa 1
Take the specified root of both sides of the equation to eliminate the exponent on the left side.
Etapa 2
A solução completa é resultado das partes positiva e negativa da solução.
Toque para ver mais passagens...
Etapa 2.1
Primeiro, use o valor positivo de para encontrar a primeira solução.
Etapa 2.2
Depois, use o valor negativo de para encontrar a segunda solução.
Etapa 2.3
A solução completa é resultado das partes positiva e negativa da solução.
Etapa 3
Estabeleça cada uma das soluções para resolver .
Etapa 4
Resolva em .
Toque para ver mais passagens...
Etapa 4.1
Obtenha o cosseno inverso dos dois lados da equação para extrair de dentro do cosseno.
Etapa 4.2
Simplifique o lado direito.
Toque para ver mais passagens...
Etapa 4.2.1
Avalie .
Etapa 4.3
A função do cosseno é positiva no primeiro e no quarto quadrantes. Para encontrar a segunda solução, subtraia o ângulo de referência de para determinar a solução no quarto quadrante.
Etapa 4.4
Resolva .
Toque para ver mais passagens...
Etapa 4.4.1
Remova os parênteses.
Etapa 4.4.2
Simplifique .
Toque para ver mais passagens...
Etapa 4.4.2.1
Multiplique por .
Etapa 4.4.2.2
Subtraia de .
Etapa 4.5
Encontre o período de .
Toque para ver mais passagens...
Etapa 4.5.1
O período da função pode ser calculado ao usar .
Etapa 4.5.2
Substitua por na fórmula do período.
Etapa 4.5.3
O valor absoluto é a distância entre um número e zero. A distância entre e é .
Etapa 4.5.4
Divida por .
Etapa 4.6
O período da função é . Portanto, os valores se repetirão a cada radianos nas duas direções.
, para qualquer número inteiro
, para qualquer número inteiro
Etapa 5
Resolva em .
Toque para ver mais passagens...
Etapa 5.1
Obtenha o cosseno inverso dos dois lados da equação para extrair de dentro do cosseno.
Etapa 5.2
Simplifique o lado direito.
Toque para ver mais passagens...
Etapa 5.2.1
Avalie .
Etapa 5.3
A função do cosseno é negativa no segundo e no terceiro quadrantes. Para encontrar a segunda solução, subtraia o ângulo de referência de para determinar a solução no terceiro quadrante.
Etapa 5.4
Resolva .
Toque para ver mais passagens...
Etapa 5.4.1
Remova os parênteses.
Etapa 5.4.2
Simplifique .
Toque para ver mais passagens...
Etapa 5.4.2.1
Multiplique por .
Etapa 5.4.2.2
Subtraia de .
Etapa 5.5
Encontre o período de .
Toque para ver mais passagens...
Etapa 5.5.1
O período da função pode ser calculado ao usar .
Etapa 5.5.2
Substitua por na fórmula do período.
Etapa 5.5.3
O valor absoluto é a distância entre um número e zero. A distância entre e é .
Etapa 5.5.4
Divida por .
Etapa 5.6
O período da função é . Portanto, os valores se repetirão a cada radianos nas duas direções.
, para qualquer número inteiro
, para qualquer número inteiro
Etapa 6
Liste todas as soluções.
, para qualquer número inteiro
Etapa 7
Consolide as soluções.
Toque para ver mais passagens...
Etapa 7.1
Consolide e em .
, para qualquer número inteiro
Etapa 7.2
Consolide e em .
, para qualquer número inteiro
, para qualquer número inteiro