Insira um problema...
Trigonometria Exemplos
Etapa 1
Para remover o radical no lado esquerdo da equação, eleve ao quadrado os dois lados da equação.
Etapa 2
Etapa 2.1
Use para reescrever como .
Etapa 2.2
Simplifique o lado esquerdo.
Etapa 2.2.1
Simplifique .
Etapa 2.2.1.1
Multiplique os expoentes em .
Etapa 2.2.1.1.1
Aplique a regra da multiplicação de potências e multiplique os expoentes, .
Etapa 2.2.1.1.2
Cancele o fator comum de .
Etapa 2.2.1.1.2.1
Cancele o fator comum.
Etapa 2.2.1.1.2.2
Reescreva a expressão.
Etapa 2.2.1.2
Simplifique.
Etapa 2.3
Simplifique o lado direito.
Etapa 2.3.1
Eleve à potência de .
Etapa 3
Etapa 3.1
Mova todos os termos que não contêm para o lado direito da equação.
Etapa 3.1.1
Subtraia dos dois lados da equação.
Etapa 3.1.2
Subtraia de .
Etapa 3.2
Divida cada termo em por e simplifique.
Etapa 3.2.1
Divida cada termo em por .
Etapa 3.2.2
Simplifique o lado esquerdo.
Etapa 3.2.2.1
Cancele o fator comum de .
Etapa 3.2.2.1.1
Cancele o fator comum.
Etapa 3.2.2.1.2
Divida por .
Etapa 3.2.3
Simplifique o lado direito.
Etapa 3.2.3.1
Cancele o fator comum de e .
Etapa 3.2.3.1.1
Fatore de .
Etapa 3.2.3.1.2
Cancele os fatores comuns.
Etapa 3.2.3.1.2.1
Fatore de .
Etapa 3.2.3.1.2.2
Cancele o fator comum.
Etapa 3.2.3.1.2.3
Reescreva a expressão.
Etapa 3.3
Obtenha o seno inverso dos dois lados da equação para extrair de dentro do seno.
Etapa 3.4
Simplifique o lado direito.
Etapa 3.4.1
O valor exato de é .
Etapa 3.5
A função do seno é positiva no primeiro e no segundo quadrantes. Para encontrar a segunda solução, subtraia o ângulo de referência de para determinar a solução no segundo quadrante.
Etapa 3.6
Simplifique .
Etapa 3.6.1
Para escrever como fração com um denominador comum, multiplique por .
Etapa 3.6.2
Combine frações.
Etapa 3.6.2.1
Combine e .
Etapa 3.6.2.2
Combine os numeradores em relação ao denominador comum.
Etapa 3.6.3
Simplifique o numerador.
Etapa 3.6.3.1
Mova para a esquerda de .
Etapa 3.6.3.2
Subtraia de .
Etapa 3.7
Encontre o período de .
Etapa 3.7.1
O período da função pode ser calculado ao usar .
Etapa 3.7.2
Substitua por na fórmula do período.
Etapa 3.7.3
O valor absoluto é a distância entre um número e zero. A distância entre e é .
Etapa 3.7.4
Divida por .
Etapa 3.8
O período da função é . Portanto, os valores se repetirão a cada radianos nas duas direções.
, para qualquer número inteiro
, para qualquer número inteiro