Trigonometria Exemplos

Löse nach x auf tan(3x)tan(x-1)=0
Etapa 1
Se qualquer fator individual no lado esquerdo da equação for igual a , toda a expressão será igual a .
Etapa 2
Defina como igual a e resolva para .
Toque para ver mais passagens...
Etapa 2.1
Defina como igual a .
Etapa 2.2
Resolva para .
Toque para ver mais passagens...
Etapa 2.2.1
Obtenha a tangente inversa dos dois lados da equação para extrair de dentro da tangente.
Etapa 2.2.2
Simplifique o lado direito.
Toque para ver mais passagens...
Etapa 2.2.2.1
O valor exato de é .
Etapa 2.2.3
Divida cada termo em por e simplifique.
Toque para ver mais passagens...
Etapa 2.2.3.1
Divida cada termo em por .
Etapa 2.2.3.2
Simplifique o lado esquerdo.
Toque para ver mais passagens...
Etapa 2.2.3.2.1
Cancele o fator comum de .
Toque para ver mais passagens...
Etapa 2.2.3.2.1.1
Cancele o fator comum.
Etapa 2.2.3.2.1.2
Divida por .
Etapa 2.2.3.3
Simplifique o lado direito.
Toque para ver mais passagens...
Etapa 2.2.3.3.1
Divida por .
Etapa 2.2.4
A função da tangente é positiva no primeiro e no terceiro quadrantes. Para encontrar a segunda solução, some o ângulo de referência de para determinar a solução no quarto quadrante.
Etapa 2.2.5
Resolva .
Toque para ver mais passagens...
Etapa 2.2.5.1
Some e .
Etapa 2.2.5.2
Divida cada termo em por e simplifique.
Toque para ver mais passagens...
Etapa 2.2.5.2.1
Divida cada termo em por .
Etapa 2.2.5.2.2
Simplifique o lado esquerdo.
Toque para ver mais passagens...
Etapa 2.2.5.2.2.1
Cancele o fator comum de .
Toque para ver mais passagens...
Etapa 2.2.5.2.2.1.1
Cancele o fator comum.
Etapa 2.2.5.2.2.1.2
Divida por .
Etapa 2.2.6
Encontre o período de .
Toque para ver mais passagens...
Etapa 2.2.6.1
O período da função pode ser calculado ao usar .
Etapa 2.2.6.2
Substitua por na fórmula do período.
Etapa 2.2.6.3
O valor absoluto é a distância entre um número e zero. A distância entre e é .
Etapa 2.2.7
O período da função é . Portanto, os valores se repetirão a cada radianos nas duas direções.
, para qualquer número inteiro
, para qualquer número inteiro
, para qualquer número inteiro
Etapa 3
Defina como igual a e resolva para .
Toque para ver mais passagens...
Etapa 3.1
Defina como igual a .
Etapa 3.2
Resolva para .
Toque para ver mais passagens...
Etapa 3.2.1
Obtenha a tangente inversa dos dois lados da equação para extrair de dentro da tangente.
Etapa 3.2.2
Simplifique o lado direito.
Toque para ver mais passagens...
Etapa 3.2.2.1
O valor exato de é .
Etapa 3.2.3
Some aos dois lados da equação.
Etapa 3.2.4
A função da tangente é positiva no primeiro e no terceiro quadrantes. Para encontrar a segunda solução, some o ângulo de referência de para determinar a solução no quarto quadrante.
Etapa 3.2.5
Resolva .
Toque para ver mais passagens...
Etapa 3.2.5.1
Some e .
Etapa 3.2.5.2
Some aos dois lados da equação.
Etapa 3.2.6
Encontre o período de .
Toque para ver mais passagens...
Etapa 3.2.6.1
O período da função pode ser calculado ao usar .
Etapa 3.2.6.2
Substitua por na fórmula do período.
Etapa 3.2.6.3
O valor absoluto é a distância entre um número e zero. A distância entre e é .
Etapa 3.2.6.4
Divida por .
Etapa 3.2.7
O período da função é . Portanto, os valores se repetirão a cada radianos nas duas direções.
, para qualquer número inteiro
, para qualquer número inteiro
, para qualquer número inteiro
Etapa 4
A solução final são todos os valores que tornam verdadeiro.
, para qualquer número inteiro
Etapa 5
Consolide as respostas.
Toque para ver mais passagens...
Etapa 5.1
Consolide e em .
, para qualquer número inteiro
Etapa 5.2
Consolide e em .
, para qualquer número inteiro
, para qualquer número inteiro