Insira um problema...
Trigonometria Exemplos
Etapa 1
Em qualquer , as assíntotas verticais ocorrem em , em que é um número inteiro. Use o período básico de , , para encontrar as assíntotas verticais de . Defina a parte interna da função secante, , para igual a para encontrar onde a assíntota vertical ocorre para .
Etapa 2
Etapa 2.1
Subtraia dos dois lados da equação.
Etapa 2.2
Para escrever como fração com um denominador comum, multiplique por .
Etapa 2.3
Escreva cada expressão com um denominador comum de , multiplicando cada um por um fator apropriado de .
Etapa 2.3.1
Multiplique por .
Etapa 2.3.2
Multiplique por .
Etapa 2.4
Combine os numeradores em relação ao denominador comum.
Etapa 2.5
Simplifique o numerador.
Etapa 2.5.1
Multiplique por .
Etapa 2.5.2
Subtraia de .
Etapa 2.6
Mova o número negativo para a frente da fração.
Etapa 3
Defina a parte interna da função secante como igual a .
Etapa 4
Etapa 4.1
Subtraia dos dois lados da equação.
Etapa 4.2
Para escrever como fração com um denominador comum, multiplique por .
Etapa 4.3
Escreva cada expressão com um denominador comum de , multiplicando cada um por um fator apropriado de .
Etapa 4.3.1
Multiplique por .
Etapa 4.3.2
Multiplique por .
Etapa 4.4
Combine os numeradores em relação ao denominador comum.
Etapa 4.5
Simplifique o numerador.
Etapa 4.5.1
Multiplique por .
Etapa 4.5.2
Subtraia de .
Etapa 5
O período básico para ocorrerá em , em que e são assíntotas verticais.
Etapa 6
Etapa 6.1
O valor absoluto é a distância entre um número e zero. A distância entre e é .
Etapa 6.2
Divida por .
Etapa 7
As assíntotas verticais de ocorrem em , e a cada , em que é um número inteiro. Isso é metade do período.
Etapa 8
A secante só tem assíntotas verticais.
Nenhuma assíntota horizontal
Nenhuma assíntota oblíqua
Assíntotas verticais: , em que é um número inteiro
Etapa 9