Trigonometria Exemplos

Löse nach x auf sin(x)- raiz quadrada de 3-3sin(x)^2=0
Etapa 1
Subtraia dos dois lados da equação.
Etapa 2
Para remover o radical no lado esquerdo da equação, eleve ao quadrado os dois lados da equação.
Etapa 3
Simplifique cada lado da equação.
Toque para ver mais passagens...
Etapa 3.1
Use para reescrever como .
Etapa 3.2
Simplifique o lado esquerdo.
Toque para ver mais passagens...
Etapa 3.2.1
Simplifique .
Toque para ver mais passagens...
Etapa 3.2.1.1
Aplique a regra do produto a .
Etapa 3.2.1.2
Eleve à potência de .
Etapa 3.2.1.3
Multiplique por .
Etapa 3.2.1.4
Multiplique os expoentes em .
Toque para ver mais passagens...
Etapa 3.2.1.4.1
Aplique a regra da multiplicação de potências e multiplique os expoentes, .
Etapa 3.2.1.4.2
Cancele o fator comum de .
Toque para ver mais passagens...
Etapa 3.2.1.4.2.1
Cancele o fator comum.
Etapa 3.2.1.4.2.2
Reescreva a expressão.
Etapa 3.2.1.5
Simplifique.
Etapa 3.3
Simplifique o lado direito.
Toque para ver mais passagens...
Etapa 3.3.1
Simplifique .
Toque para ver mais passagens...
Etapa 3.3.1.1
Aplique a regra do produto a .
Etapa 3.3.1.2
Eleve à potência de .
Etapa 3.3.1.3
Multiplique por .
Etapa 4
Resolva .
Toque para ver mais passagens...
Etapa 4.1
Mova todos os termos que contêm para o lado esquerdo da equação.
Toque para ver mais passagens...
Etapa 4.1.1
Subtraia dos dois lados da equação.
Etapa 4.1.2
Subtraia de .
Etapa 4.2
Subtraia dos dois lados da equação.
Etapa 4.3
Divida cada termo em por e simplifique.
Toque para ver mais passagens...
Etapa 4.3.1
Divida cada termo em por .
Etapa 4.3.2
Simplifique o lado esquerdo.
Toque para ver mais passagens...
Etapa 4.3.2.1
Cancele o fator comum de .
Toque para ver mais passagens...
Etapa 4.3.2.1.1
Cancele o fator comum.
Etapa 4.3.2.1.2
Divida por .
Etapa 4.3.3
Simplifique o lado direito.
Toque para ver mais passagens...
Etapa 4.3.3.1
Dividir dois valores negativos resulta em um valor positivo.
Etapa 4.4
Take the specified root of both sides of the equation to eliminate the exponent on the left side.
Etapa 4.5
Simplifique .
Toque para ver mais passagens...
Etapa 4.5.1
Reescreva como .
Etapa 4.5.2
Simplifique o denominador.
Toque para ver mais passagens...
Etapa 4.5.2.1
Reescreva como .
Etapa 4.5.2.2
Elimine os termos abaixo do radical, presumindo que sejam números reais positivos.
Etapa 4.6
A solução completa é resultado das partes positiva e negativa da solução.
Toque para ver mais passagens...
Etapa 4.6.1
Primeiro, use o valor positivo de para encontrar a primeira solução.
Etapa 4.6.2
Depois, use o valor negativo de para encontrar a segunda solução.
Etapa 4.6.3
A solução completa é resultado das partes positiva e negativa da solução.
Etapa 5
Estabeleça cada uma das soluções para resolver .
Etapa 6
Resolva em .
Toque para ver mais passagens...
Etapa 6.1
Obtenha o seno inverso dos dois lados da equação para extrair de dentro do seno.
Etapa 6.2
Simplifique o lado direito.
Toque para ver mais passagens...
Etapa 6.2.1
O valor exato de é .
Etapa 6.3
A função do seno é positiva no primeiro e no segundo quadrantes. Para encontrar a segunda solução, subtraia o ângulo de referência de para determinar a solução no segundo quadrante.
Etapa 6.4
Simplifique .
Toque para ver mais passagens...
Etapa 6.4.1
Para escrever como fração com um denominador comum, multiplique por .
Etapa 6.4.2
Combine frações.
Toque para ver mais passagens...
Etapa 6.4.2.1
Combine e .
Etapa 6.4.2.2
Combine os numeradores em relação ao denominador comum.
Etapa 6.4.3
Simplifique o numerador.
Toque para ver mais passagens...
Etapa 6.4.3.1
Mova para a esquerda de .
Etapa 6.4.3.2
Subtraia de .
Etapa 6.5
Encontre o período de .
Toque para ver mais passagens...
Etapa 6.5.1
O período da função pode ser calculado ao usar .
Etapa 6.5.2
Substitua por na fórmula do período.
Etapa 6.5.3
O valor absoluto é a distância entre um número e zero. A distância entre e é .
Etapa 6.5.4
Divida por .
Etapa 6.6
O período da função é . Portanto, os valores se repetirão a cada radianos nas duas direções.
, para qualquer número inteiro
, para qualquer número inteiro
Etapa 7
Resolva em .
Toque para ver mais passagens...
Etapa 7.1
Obtenha o seno inverso dos dois lados da equação para extrair de dentro do seno.
Etapa 7.2
Simplifique o lado direito.
Toque para ver mais passagens...
Etapa 7.2.1
O valor exato de é .
Etapa 7.3
A função do seno é negativa no terceiro e no quarto quadrantes. Para encontrar a segunda solução, subtraia a solução de para determinar um ângulo de referência. Depois, some esse ângulo de referência com para encontrar a solução no terceiro quadrante.
Etapa 7.4
Simplifique a expressão para encontrar a segunda solução.
Toque para ver mais passagens...
Etapa 7.4.1
Subtraia de .
Etapa 7.4.2
O ângulo resultante de é positivo, menor do que e coterminal com .
Etapa 7.5
Encontre o período de .
Toque para ver mais passagens...
Etapa 7.5.1
O período da função pode ser calculado ao usar .
Etapa 7.5.2
Substitua por na fórmula do período.
Etapa 7.5.3
O valor absoluto é a distância entre um número e zero. A distância entre e é .
Etapa 7.5.4
Divida por .
Etapa 7.6
Some com todos os ângulos negativos para obter os ângulos positivos.
Toque para ver mais passagens...
Etapa 7.6.1
Some com para encontrar o ângulo positivo.
Etapa 7.6.2
Para escrever como fração com um denominador comum, multiplique por .
Etapa 7.6.3
Combine frações.
Toque para ver mais passagens...
Etapa 7.6.3.1
Combine e .
Etapa 7.6.3.2
Combine os numeradores em relação ao denominador comum.
Etapa 7.6.4
Simplifique o numerador.
Toque para ver mais passagens...
Etapa 7.6.4.1
Multiplique por .
Etapa 7.6.4.2
Subtraia de .
Etapa 7.6.5
Liste os novos ângulos.
Etapa 7.7
O período da função é . Portanto, os valores se repetirão a cada radianos nas duas direções.
, para qualquer número inteiro
, para qualquer número inteiro
Etapa 8
Liste todas as soluções.
, para qualquer número inteiro
Etapa 9
Consolide as soluções.
Toque para ver mais passagens...
Etapa 9.1
Consolide e em .
, para qualquer número inteiro
Etapa 9.2
Consolide e em .
, para qualquer número inteiro
, para qualquer número inteiro
Etapa 10
Exclua as soluções que não tornam verdadeira.
, para qualquer número inteiro