Insira um problema...
Trigonometria Exemplos
Etapa 1
Subtraia dos dois lados da equação.
Etapa 2
Etapa 2.1
Simplifique cada termo.
Etapa 2.1.1
Reescreva em termos de senos e cossenos.
Etapa 2.1.2
Aplique a regra do produto a .
Etapa 2.1.3
Multiplique .
Etapa 2.1.3.1
Combine e .
Etapa 2.1.3.2
Multiplique por somando os expoentes.
Etapa 2.1.3.2.1
Multiplique por .
Etapa 2.1.3.2.1.1
Eleve à potência de .
Etapa 2.1.3.2.1.2
Use a regra da multiplicação de potências para combinar expoentes.
Etapa 2.1.3.2.2
Some e .
Etapa 2.2
Simplifique cada termo.
Etapa 2.2.1
Fatore de .
Etapa 2.2.2
Multiplique por .
Etapa 2.2.3
Separe as frações.
Etapa 2.2.4
Converta de em .
Etapa 2.2.5
Divida por .
Etapa 3
Etapa 3.1
Fatore de .
Etapa 3.2
Fatore de .
Etapa 4
Se qualquer fator individual no lado esquerdo da equação for igual a , toda a expressão será igual a .
Etapa 5
Etapa 5.1
Defina como igual a .
Etapa 5.2
Resolva para .
Etapa 5.2.1
Obtenha o seno inverso dos dois lados da equação para extrair de dentro do seno.
Etapa 5.2.2
Simplifique o lado direito.
Etapa 5.2.2.1
O valor exato de é .
Etapa 5.2.3
A função do seno é positiva no primeiro e no segundo quadrantes. Para encontrar a segunda solução, subtraia o ângulo de referência de para determinar a solução no segundo quadrante.
Etapa 5.2.4
Subtraia de .
Etapa 5.2.5
Encontre o período de .
Etapa 5.2.5.1
O período da função pode ser calculado ao usar .
Etapa 5.2.5.2
Substitua por na fórmula do período.
Etapa 5.2.5.3
O valor absoluto é a distância entre um número e zero. A distância entre e é .
Etapa 5.2.5.4
Divida por .
Etapa 5.2.6
O período da função é . Portanto, os valores se repetirão a cada radianos nas duas direções.
, para qualquer número inteiro
, para qualquer número inteiro
, para qualquer número inteiro
Etapa 6
Etapa 6.1
Defina como igual a .
Etapa 6.2
Resolva para .
Etapa 6.2.1
Some aos dois lados da equação.
Etapa 6.2.2
Take the specified root of both sides of the equation to eliminate the exponent on the left side.
Etapa 6.2.3
A solução completa é resultado das partes positiva e negativa da solução.
Etapa 6.2.3.1
Primeiro, use o valor positivo de para encontrar a primeira solução.
Etapa 6.2.3.2
Depois, use o valor negativo de para encontrar a segunda solução.
Etapa 6.2.3.3
A solução completa é resultado das partes positiva e negativa da solução.
Etapa 6.2.4
Estabeleça cada uma das soluções para resolver .
Etapa 6.2.5
Resolva em .
Etapa 6.2.5.1
Obtenha a tangente inversa dos dois lados da equação para extrair de dentro da tangente.
Etapa 6.2.5.2
Simplifique o lado direito.
Etapa 6.2.5.2.1
O valor exato de é .
Etapa 6.2.5.3
A função da tangente é positiva no primeiro e no terceiro quadrantes. Para encontrar a segunda solução, some o ângulo de referência de para determinar a solução no quarto quadrante.
Etapa 6.2.5.4
Simplifique .
Etapa 6.2.5.4.1
Para escrever como fração com um denominador comum, multiplique por .
Etapa 6.2.5.4.2
Combine frações.
Etapa 6.2.5.4.2.1
Combine e .
Etapa 6.2.5.4.2.2
Combine os numeradores em relação ao denominador comum.
Etapa 6.2.5.4.3
Simplifique o numerador.
Etapa 6.2.5.4.3.1
Mova para a esquerda de .
Etapa 6.2.5.4.3.2
Some e .
Etapa 6.2.5.5
Encontre o período de .
Etapa 6.2.5.5.1
O período da função pode ser calculado ao usar .
Etapa 6.2.5.5.2
Substitua por na fórmula do período.
Etapa 6.2.5.5.3
O valor absoluto é a distância entre um número e zero. A distância entre e é .
Etapa 6.2.5.5.4
Divida por .
Etapa 6.2.5.6
O período da função é . Portanto, os valores se repetirão a cada radianos nas duas direções.
, para qualquer número inteiro
, para qualquer número inteiro
Etapa 6.2.6
Resolva em .
Etapa 6.2.6.1
Obtenha a tangente inversa dos dois lados da equação para extrair de dentro da tangente.
Etapa 6.2.6.2
Simplifique o lado direito.
Etapa 6.2.6.2.1
O valor exato de é .
Etapa 6.2.6.3
A função da tangente é negativa no segundo e no quarto quadrantes. Para encontrar a segunda solução, subtraia o ângulo de referência de para determinar a solução no terceiro quadrante.
Etapa 6.2.6.4
Simplifique a expressão para encontrar a segunda solução.
Etapa 6.2.6.4.1
Some a .
Etapa 6.2.6.4.2
O ângulo resultante de é positivo e coterminal com .
Etapa 6.2.6.5
Encontre o período de .
Etapa 6.2.6.5.1
O período da função pode ser calculado ao usar .
Etapa 6.2.6.5.2
Substitua por na fórmula do período.
Etapa 6.2.6.5.3
O valor absoluto é a distância entre um número e zero. A distância entre e é .
Etapa 6.2.6.5.4
Divida por .
Etapa 6.2.6.6
Some com todos os ângulos negativos para obter os ângulos positivos.
Etapa 6.2.6.6.1
Some com para encontrar o ângulo positivo.
Etapa 6.2.6.6.2
Para escrever como fração com um denominador comum, multiplique por .
Etapa 6.2.6.6.3
Combine frações.
Etapa 6.2.6.6.3.1
Combine e .
Etapa 6.2.6.6.3.2
Combine os numeradores em relação ao denominador comum.
Etapa 6.2.6.6.4
Simplifique o numerador.
Etapa 6.2.6.6.4.1
Mova para a esquerda de .
Etapa 6.2.6.6.4.2
Subtraia de .
Etapa 6.2.6.6.5
Liste os novos ângulos.
Etapa 6.2.6.7
O período da função é . Portanto, os valores se repetirão a cada radianos nas duas direções.
, para qualquer número inteiro
, para qualquer número inteiro
Etapa 6.2.7
Liste todas as soluções.
, para qualquer número inteiro
Etapa 6.2.8
Consolide as soluções.
Etapa 6.2.8.1
Consolide e em .
, para qualquer número inteiro
Etapa 6.2.8.2
Consolide e em .
, para qualquer número inteiro
, para qualquer número inteiro
, para qualquer número inteiro
, para qualquer número inteiro
Etapa 7
A solução final são todos os valores que tornam verdadeiro.
, para qualquer número inteiro
Etapa 8
Etapa 8.1
Consolide e em .
, para qualquer número inteiro
Etapa 8.2
Consolide as respostas.
, para qualquer número inteiro
, para qualquer número inteiro