Trigonometria Exemplos

Löse nach x auf tan(x)^2sin(x)=3sin(x)
Etapa 1
Subtraia dos dois lados da equação.
Etapa 2
Simplifique o lado esquerdo da equação.
Toque para ver mais passagens...
Etapa 2.1
Simplifique cada termo.
Toque para ver mais passagens...
Etapa 2.1.1
Reescreva em termos de senos e cossenos.
Etapa 2.1.2
Aplique a regra do produto a .
Etapa 2.1.3
Multiplique .
Toque para ver mais passagens...
Etapa 2.1.3.1
Combine e .
Etapa 2.1.3.2
Multiplique por somando os expoentes.
Toque para ver mais passagens...
Etapa 2.1.3.2.1
Multiplique por .
Toque para ver mais passagens...
Etapa 2.1.3.2.1.1
Eleve à potência de .
Etapa 2.1.3.2.1.2
Use a regra da multiplicação de potências para combinar expoentes.
Etapa 2.1.3.2.2
Some e .
Etapa 2.2
Simplifique cada termo.
Toque para ver mais passagens...
Etapa 2.2.1
Fatore de .
Etapa 2.2.2
Multiplique por .
Etapa 2.2.3
Separe as frações.
Etapa 2.2.4
Converta de em .
Etapa 2.2.5
Divida por .
Etapa 3
Fatore de .
Toque para ver mais passagens...
Etapa 3.1
Fatore de .
Etapa 3.2
Fatore de .
Etapa 4
Se qualquer fator individual no lado esquerdo da equação for igual a , toda a expressão será igual a .
Etapa 5
Defina como igual a e resolva para .
Toque para ver mais passagens...
Etapa 5.1
Defina como igual a .
Etapa 5.2
Resolva para .
Toque para ver mais passagens...
Etapa 5.2.1
Obtenha o seno inverso dos dois lados da equação para extrair de dentro do seno.
Etapa 5.2.2
Simplifique o lado direito.
Toque para ver mais passagens...
Etapa 5.2.2.1
O valor exato de é .
Etapa 5.2.3
A função do seno é positiva no primeiro e no segundo quadrantes. Para encontrar a segunda solução, subtraia o ângulo de referência de para determinar a solução no segundo quadrante.
Etapa 5.2.4
Subtraia de .
Etapa 5.2.5
Encontre o período de .
Toque para ver mais passagens...
Etapa 5.2.5.1
O período da função pode ser calculado ao usar .
Etapa 5.2.5.2
Substitua por na fórmula do período.
Etapa 5.2.5.3
O valor absoluto é a distância entre um número e zero. A distância entre e é .
Etapa 5.2.5.4
Divida por .
Etapa 5.2.6
O período da função é . Portanto, os valores se repetirão a cada radianos nas duas direções.
, para qualquer número inteiro
, para qualquer número inteiro
, para qualquer número inteiro
Etapa 6
Defina como igual a e resolva para .
Toque para ver mais passagens...
Etapa 6.1
Defina como igual a .
Etapa 6.2
Resolva para .
Toque para ver mais passagens...
Etapa 6.2.1
Some aos dois lados da equação.
Etapa 6.2.2
Take the specified root of both sides of the equation to eliminate the exponent on the left side.
Etapa 6.2.3
A solução completa é resultado das partes positiva e negativa da solução.
Toque para ver mais passagens...
Etapa 6.2.3.1
Primeiro, use o valor positivo de para encontrar a primeira solução.
Etapa 6.2.3.2
Depois, use o valor negativo de para encontrar a segunda solução.
Etapa 6.2.3.3
A solução completa é resultado das partes positiva e negativa da solução.
Etapa 6.2.4
Estabeleça cada uma das soluções para resolver .
Etapa 6.2.5
Resolva em .
Toque para ver mais passagens...
Etapa 6.2.5.1
Obtenha a tangente inversa dos dois lados da equação para extrair de dentro da tangente.
Etapa 6.2.5.2
Simplifique o lado direito.
Toque para ver mais passagens...
Etapa 6.2.5.2.1
O valor exato de é .
Etapa 6.2.5.3
A função da tangente é positiva no primeiro e no terceiro quadrantes. Para encontrar a segunda solução, some o ângulo de referência de para determinar a solução no quarto quadrante.
Etapa 6.2.5.4
Simplifique .
Toque para ver mais passagens...
Etapa 6.2.5.4.1
Para escrever como fração com um denominador comum, multiplique por .
Etapa 6.2.5.4.2
Combine frações.
Toque para ver mais passagens...
Etapa 6.2.5.4.2.1
Combine e .
Etapa 6.2.5.4.2.2
Combine os numeradores em relação ao denominador comum.
Etapa 6.2.5.4.3
Simplifique o numerador.
Toque para ver mais passagens...
Etapa 6.2.5.4.3.1
Mova para a esquerda de .
Etapa 6.2.5.4.3.2
Some e .
Etapa 6.2.5.5
Encontre o período de .
Toque para ver mais passagens...
Etapa 6.2.5.5.1
O período da função pode ser calculado ao usar .
Etapa 6.2.5.5.2
Substitua por na fórmula do período.
Etapa 6.2.5.5.3
O valor absoluto é a distância entre um número e zero. A distância entre e é .
Etapa 6.2.5.5.4
Divida por .
Etapa 6.2.5.6
O período da função é . Portanto, os valores se repetirão a cada radianos nas duas direções.
, para qualquer número inteiro
, para qualquer número inteiro
Etapa 6.2.6
Resolva em .
Toque para ver mais passagens...
Etapa 6.2.6.1
Obtenha a tangente inversa dos dois lados da equação para extrair de dentro da tangente.
Etapa 6.2.6.2
Simplifique o lado direito.
Toque para ver mais passagens...
Etapa 6.2.6.2.1
O valor exato de é .
Etapa 6.2.6.3
A função da tangente é negativa no segundo e no quarto quadrantes. Para encontrar a segunda solução, subtraia o ângulo de referência de para determinar a solução no terceiro quadrante.
Etapa 6.2.6.4
Simplifique a expressão para encontrar a segunda solução.
Toque para ver mais passagens...
Etapa 6.2.6.4.1
Some a .
Etapa 6.2.6.4.2
O ângulo resultante de é positivo e coterminal com .
Etapa 6.2.6.5
Encontre o período de .
Toque para ver mais passagens...
Etapa 6.2.6.5.1
O período da função pode ser calculado ao usar .
Etapa 6.2.6.5.2
Substitua por na fórmula do período.
Etapa 6.2.6.5.3
O valor absoluto é a distância entre um número e zero. A distância entre e é .
Etapa 6.2.6.5.4
Divida por .
Etapa 6.2.6.6
Some com todos os ângulos negativos para obter os ângulos positivos.
Toque para ver mais passagens...
Etapa 6.2.6.6.1
Some com para encontrar o ângulo positivo.
Etapa 6.2.6.6.2
Para escrever como fração com um denominador comum, multiplique por .
Etapa 6.2.6.6.3
Combine frações.
Toque para ver mais passagens...
Etapa 6.2.6.6.3.1
Combine e .
Etapa 6.2.6.6.3.2
Combine os numeradores em relação ao denominador comum.
Etapa 6.2.6.6.4
Simplifique o numerador.
Toque para ver mais passagens...
Etapa 6.2.6.6.4.1
Mova para a esquerda de .
Etapa 6.2.6.6.4.2
Subtraia de .
Etapa 6.2.6.6.5
Liste os novos ângulos.
Etapa 6.2.6.7
O período da função é . Portanto, os valores se repetirão a cada radianos nas duas direções.
, para qualquer número inteiro
, para qualquer número inteiro
Etapa 6.2.7
Liste todas as soluções.
, para qualquer número inteiro
Etapa 6.2.8
Consolide as soluções.
Toque para ver mais passagens...
Etapa 6.2.8.1
Consolide e em .
, para qualquer número inteiro
Etapa 6.2.8.2
Consolide e em .
, para qualquer número inteiro
, para qualquer número inteiro
, para qualquer número inteiro
, para qualquer número inteiro
Etapa 7
A solução final são todos os valores que tornam verdadeiro.
, para qualquer número inteiro
Etapa 8
Consolide as respostas.
Toque para ver mais passagens...
Etapa 8.1
Consolide e em .
, para qualquer número inteiro
Etapa 8.2
Consolide as respostas.
, para qualquer número inteiro
, para qualquer número inteiro