Trigonometria Exemplos

Löse nach x in Radiant auf raiz quadrada de 3cot(x)-1=0
Etapa 1
Some aos dois lados da equação.
Etapa 2
Divida cada termo em por e simplifique.
Toque para ver mais passagens...
Etapa 2.1
Divida cada termo em por .
Etapa 2.2
Simplifique o lado esquerdo.
Toque para ver mais passagens...
Etapa 2.2.1
Cancele o fator comum de .
Toque para ver mais passagens...
Etapa 2.2.1.1
Cancele o fator comum.
Etapa 2.2.1.2
Divida por .
Etapa 2.3
Simplifique o lado direito.
Toque para ver mais passagens...
Etapa 2.3.1
Multiplique por .
Etapa 2.3.2
Combine e simplifique o denominador.
Toque para ver mais passagens...
Etapa 2.3.2.1
Multiplique por .
Etapa 2.3.2.2
Eleve à potência de .
Etapa 2.3.2.3
Eleve à potência de .
Etapa 2.3.2.4
Use a regra da multiplicação de potências para combinar expoentes.
Etapa 2.3.2.5
Some e .
Etapa 2.3.2.6
Reescreva como .
Toque para ver mais passagens...
Etapa 2.3.2.6.1
Use para reescrever como .
Etapa 2.3.2.6.2
Aplique a regra da multiplicação de potências e multiplique os expoentes, .
Etapa 2.3.2.6.3
Combine e .
Etapa 2.3.2.6.4
Cancele o fator comum de .
Toque para ver mais passagens...
Etapa 2.3.2.6.4.1
Cancele o fator comum.
Etapa 2.3.2.6.4.2
Reescreva a expressão.
Etapa 2.3.2.6.5
Avalie o expoente.
Etapa 3
Obtenha a cotangente inversa dos dois lados da equação para extrair de dentro da cotangente.
Etapa 4
Simplifique o lado direito.
Toque para ver mais passagens...
Etapa 4.1
O valor exato de é .
Etapa 5
A função da cotangente é positiva no primeiro e no terceiro quadrantes. Para encontrar a segunda solução, some o ângulo de referência de para determinar a solução no quarto quadrante.
Etapa 6
Simplifique .
Toque para ver mais passagens...
Etapa 6.1
Para escrever como fração com um denominador comum, multiplique por .
Etapa 6.2
Combine frações.
Toque para ver mais passagens...
Etapa 6.2.1
Combine e .
Etapa 6.2.2
Combine os numeradores em relação ao denominador comum.
Etapa 6.3
Simplifique o numerador.
Toque para ver mais passagens...
Etapa 6.3.1
Mova para a esquerda de .
Etapa 6.3.2
Some e .
Etapa 7
Encontre o período de .
Toque para ver mais passagens...
Etapa 7.1
O período da função pode ser calculado ao usar .
Etapa 7.2
Substitua por na fórmula do período.
Etapa 7.3
O valor absoluto é a distância entre um número e zero. A distância entre e é .
Etapa 7.4
Divida por .
Etapa 8
O período da função é . Portanto, os valores se repetirão a cada radianos nas duas direções.
, para qualquer número inteiro
Etapa 9
Consolide as respostas.
, para qualquer número inteiro